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1. Introduction

Cognitive agents which are organized to achieve godsin the world have three fundamenta activities to perform:

-}
Making sense of the Planning
actions to

achieve goals

Predict consequences
of hypothetical actions

Figure 1 Some subtasks for a cognitive agent.

Making sense of the world: Usng sensors and other information (including knowledge in memory), the agents
have to form atheory of the world, about what is out there and how it works. This task has a number of different
subtasks: sensory processing, forming a perception at theright level of abstraction that relates to the gods, and
condructing an explanation of what is going on in the world. In this paper we are concerned with the form such
explanations often take. Specificaly, we propose that such explanations often take the form of a certain type of
causal story, and the dementsin the sory are linked together following specific rules of compaosition.

Planning actions to achieve goals: The agent has to embark on actions on the world in order to achieve goas.
One technique that is commonly employed isfor the agent to synthesize a plan, a sequence of intended actions.
Knowledge about the state and causal properties of the world is needed to generate the plans. In particular,
causd gtories can be inverted to reason from desired states to actions which are likely to produce them.
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Predicting consequences. A common subtask in planning is to predict consequences of proposed actions to
check that desired consegquences arise and undesired consequences do not. A common subtask of "making sense
of the world," is to evaluate hypotheses about states of the world by predicting the consequences of that sate and
checking if the consequences are indeed true in the world. If predicted consequences are true, that hypothesis of
the gtate of the world would be given ahigher plausibility. Thus prediction is an important and ubiquitous
cognitive activity. Causa modds play arolein prediction aswell.

Forming causad modds of the world and using them for prediction, planning and forming additiona causal modes
are thus important activities of cognitive agents. The mgor god of this paper isto review atheory about what
form such causd models take and how they can be used for various problem solving purposes. An important
underlying ideais that causal understanding of the world doesn't come smply in the form of "facts' about the
world -- propositions or causa rules -- but in the form of causa packages which are organized from specific
perspectives and which point to other casua packages. The work reviewed is based on the idea that these
packages are basic units of comprehension and prediction. The functiond representation (FR) theory isa
proposal about the logical structure, representation and use of such casua packages. This article brings together
work that has been developed and published in the last decade by a number of researchers.

Study of causdity has many dimensions, and has an illustrious history in philasophy. It isimportant to be clear
about what aspects of the construction of causal models are relevant to our purposes here. One mgor stream of
philosophica work on causality grapples with the sesmantics of the term "cause,” i. e, investigates exactly what it
means to say "A causes B," or, equivaently, the necessary and sufficient conditions on A and B for us to assert
that "A causes B." There continue to be different points of view on thisissue, but thisis not an issue that we will
be concerned with in this paper. A second stream takes one or the other meaning of causdlity as given, and seeks
to give computationd formaismsfor deciding if A causesB. In Al, Pearl and Verma (1991), for example, have
adopted a probabiligtic interpretation of causality, and they then go on to propose a Bayesian technique for
computing the likelihood that A causes B. Our work is not concerned with formdizing the semantics of "cause"
Wetake "cause" as aprimitive. Our representations aready start with some knowledge about causes, and we
want to build other causd relaions from this. Our work is dso not concerned with quantification of the
probabilities of causation. For now we take our causation to be deterministic. The research reported here has the
god of daborating atheory of representation of causa processes and using the representation for problem
solving of various sorts.

What is the connection between functions of devices and causal processes? So far | have been talking only about
causa packages, without any mention of function. In the domain of devices, causa representation and reasoning
serve severd purposes. In design, the god is to organize components in such away that the causal processes that
result cause the intended function to be achieved. In diagnosis, the causa processis analyzed to see why the
intended function is not being achieved. Thus, understanding how to represent causa processesin generd isa
prerequisite for reasoning about the functions of devices. In reasoning about device functions, we use the same
techniques as reasoning about causal processes in the world in generd, but we have specific congraints on what
kinds of effects are desired, intended, or to be avoided.

2. Human Reasoning About the Physical World
The research on device understanding and reasoning about causa processesis, for me, part of alarger agenda of
creating atechnology based on the same sources of power that the human agent taps into when reasoning about

the world. I would like to make a brief detour describing a broader framework for thinking about human
reasoning about the physica world, and dong the way point to the role played by causd process packagesin this
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framework. Those interested only in the technica aspects of Functiona Representation can skip this section and
go right to Section 3.

2. 1. Human qualitative reasoning

Let us compare atrained physicist and an unschooled man-on-the-street. The physicist has a speciaized
vocabulary and a number of mathematical modeling and andytica techniques. The physicis might deploy his or
her scientific knowledge and perspective sdectively, either to reason about specidized domains or when precise
answers to certain questions are needed. The specia vocabulary and techniques of the physicist notwithstanding,
there isasubgtantid overlap in the ways the physicist and the common man reason in everyday Stuations. They
share an ontology and generd purpose reasoning strategies that arise from the properties of the shared cognitive
architecture.

Knowledge needed for reasoning about the world comesin many types.

1. A commonsense ontol ogy which predates and isin fact used by modern science: space, time, flow, physica
objects, cause, state, perceptud primitives such as shapes, and o on. The termsin this ontology are
experientidly and logicaly so fundamentd that scientific theories are built on the infrastructure of this ontology.
Early work in Quditative Physics (QP) had asamain goa eaboration of such an ontology (Hayes, 1979, and
Forbus, 1984 are examples). Even today, agood ded of QP research grapples with the development of
ontologies for different parts of commonsense physica knowledge.

2. The scientific ontology is built on the commonsense ontology (and often gives specific technica meaningsto
some of thetermsin it, such as "force"”). Additiona concepts and terms are constructed. Some of these are quite
outside commonsense experience (examples are "voltage," "current,” and "charm of quarks”).

3. Compiled causal knowledge is knowledge of causal expectations that people compile partly from direct
experience and partly by caching some results from earlier problem solving. Which causd expectations get stored
and used islargely determined by the relevance of the causes and effects to the goal's of the problem solver.
Thereisamore organized form of causal knowledge that we build up aswell: models of causal processes. By
process modd | mean adescription in terms of temporaly evolving sate trangitions, where the state descriptions
are couched using the commonsense and scientific ontologies. For example, we have commonsense causal
processes such as "boiling," or specidized ones such as "voltage amplification,” "the business cycle," and so on.
These are goal-dependent process descriptions, ones in which the quditative states that participate in the
description have been chosen based on abstractions relevant to the agent's goals. In particular, such descriptions
are couched in terms of possible intervention options on the world to affect the causa process, or observation
options to detect the process. The work on functional representations that | describe in this paper developsthe
terms to represent these causal process descriptions.

When the process modd is based on pre-scientific or unscientific views, we have naive process modds (such as
moddls of sun rotating around the earth, or of exorcism of evil irits). Many pre-scientific process modds are
not only quite adequate, but are actualy smpler and more computationaly efficient than the scientific ones, for
everyday purposes. Some sciences, such as geology and biology, often give us their causal theories in the form of
such process descriptions (e.g., how mountains are formed, how the infection-fighting mechanism works).

These process descriptions are great organizing aids as we will discuss in the paper: they focus the direction of

prediction, help in the identification of structuresto redlize desired functions in design and suggest actions to
enable or abort the process.
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4. Mathematical equations embodying scientific laws and expressing relations between state variables.
These equations themsdves are acausd, and any causd direction is given by additional knowledge about which
variables are exogenous.

2. 2. Modeling and prediction

The framework should provide support for three components of reasoning about the physical world, moddling,
prediction and control of reasoning. In what follows, we discuss modeling and prediction. Control of reasoning is
rather orthogona to the main issues of concern here. The interested reader can refer to the section on control of
reasoning in Chandrasekaran (1992)

2.2.1. Modeling

All modding is donein the context of godsto be accomplished, i.e.,, sates to be achieved or avoided in the
world. Causa process knowledge plays an essentid role in identifying aspects of the physical stuation and
perspectives that need to be represented. The process models can be used to identify states that should be
represented and reasoned about. The heart of the modding problem is to come up with tractable representations
in a goa-dependent way. The aggregation levels (when deding with populations) (Weld, 1986) , the abstractions,
the gpproximations and the concepts in the representation are dl jointly determined by the physical Stuation, the
goals, and the rich storehouse of causal process knowledge that expert reasoners possess.

2.2.2. Prediction

The power of expertsin prediction comes, not from wholesale formdization of the problem in terms of Physics
and subsequent quditative or other smulation (as much of current QP work tends to present the problem), but by
the use of a substantid body of compiled causa knowledge in the form of causal process descriptions to
hypothesize states of potentid interest. Further, the Sate variables participating in causd rdations may not dl be
continuous, and hence, even in principle, not al problems of prediction can be formulated as andysis of
dynamical systems, as suggested by Sacks and Doyle (1992) in their critique of QP work. For example, a
subgtantia part of our causal knowledge is about nomind variables ("vacations relax people,” "lack of support
causes objectsto fdl"). Smon (1991) describes a causd ordering scheme which works with such variables, but,
asarule, the most well-known quditative reasoning models and the dynamic system anaysis techniques work
only with state variables which are continuous.

Humans, in their everyday life, rardy predict behavior in the physica world by generating along series of causa
chains. Thereason is that qualitative reasoning about the world proliferates ambiguities rapidly. If you ask
someone what will hgppen if | throw abal a awal, that person islikely to sart off with the ball bouncing off the
wall, move on to it dropping on the ground, and end with, "it will probably bounce afew more times on the floor
and pretty soon will rall off." Very little of this sequence of predictionsisthe result of goplication of scientific lavs
of motion. Rather, ashort series of causa sequences are congtructed from compiled causal knowledge,
ingtantiated to the specific physica stuation. Two important sources of power that are available for human
experts in generating successor sates and handling ambiguities are discussed next.

2.2.2.1. Compilation of potentidly interesting consequences

If we ask someone, "what will hgppen if | throw arock at the glasswindow?' that person islikdly to say, "the
window might breek." This answer is generdly not aresult of any kind of "smulaion” of the mechaniam of the
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glass under impact. A number of such causd fragments, compiled from experience or from earlier problemr
solving episodes, are stored as part of our causa knowledge about domains of interest. An important aspect of
such compilation is that the causd knowledge is, asarule, no longer in the form assartions of the form "A will
cause B" but rather of the form " A might cause B." Only causa paths thet lead to interesting consequences (i.e,
those that are likely to impact various gods of agents) are stored, but thisin turn introduces uncertainty in the
causd relation. Thisambiguity is OK, sncethe god of quditative prediction istypicaly not accuracy or certainty,
but identification of an interesting possibility that may be investigated more thoroughly if needed.

2.2.2.2. Handling ambiquity

Ambiguitiesin causal smulation are often handled not on the bag's of what effect will happen, but on what might
happen that may help or hurt the gods of the problem solver. Thus, when there is more than one successor Seate
in amulation, the state thet is related to gods of interest is chosen for further expansion. In the example involving
the glass window, suppose a person was standing on the other side of the glass window, and you saw some one
about to throw arock a the window. Y ou would most likely attempt ether to stop the rock throwing or dert the
person sanding at the window. Y ou would not be pardyzed with the ambiguities in prediction: the rock may not
redly hit the window, the window may not shetter, the rock may miss the person, the rock or glass fragments
may not draw blood, and so on. Prediction of behavior in the physica world aways takes place in the context of
such background gods. The existence of these goals makes up for the fact that we rarely have enough
information to be more than quditative in our reasoning[1]. Lest one should think that thisis only a phenomenon
of interest in the commonsense world, it should be stressed that engineering reasoning is full of such god-driven
ambiguity handling. For example, in design andys's, one might use this form of ambiguity handling to identify the
possihility that a component will make its way into a dangerous sate. Of course, once this possibility isidentified,
quantitative or other normative methods can be used in a selective way to verify the hypothess. Scientific first
principles are embedded in process descriptions (in the form of explanations of causd trangtions) in such away
that these principles can be formaly used as needed for detailed caculation.

In engineering and scientific prediction problems, these techniques of ambiguity reduction are not dways
aufficient. Whenever reasoning about consequences reaches a point where relatively precise answers are needed
for choices to be made the situation can be sdlectively modeled and anaytical methods of varying degrees of
complexity and precision can be employed. The modds that are formed reflect the problem solving god that is
current, and typicaly represent only asmal dice of the physcd sysem. Mathematica techniques of various
kinds, including dynamic system anaysis techniques recommended in (Sacks and Doyle, 1992), will clearly form
apart of thisarsend of andytica techniques.

3. Higtorical background
3.1. Need for "Models' in Diagnostic Reasoning

A brief historica background to the development of this body of ideas on representation of functions and causd
processes might help motivate the ideas. In 1983, one of my main interests in problem solving was diagnostic
reasoning. At that time, a discussion was getting started on so-caled "deep” versus "shalow" representation of
knowledge for diagnosis. Rules were said to be shalow because they were -- it was claimed -- just associations
between symptoms and mafunctions (asin Mycin), without any indication of how the latter caused the former. It
was proposed that, in contrast, there were so-called deep representations which provided a basis for explaining
the associations. When diagnostic knowledge, i.e., knowledge that related the mafunction categories and
symptoms, was incomplete or missing, it was proposed that these deep representations, aso called models[2],
might be invoked and the missing knowledge generated. (See Chandrasekaran and Mittd, 1983, for an early
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presentation of these ideas, and Bylander, 1990, and Chandrasekaran, 1991, for a more recent andysis of the
issues involved.) Modd-based reasoning became a big subarea of research in Al over the last decade, precisdy
in response to the perceived need for a representation that was not just restricted to a narrow range of tasks.

Modes were intended to be a description of how the device worked. | review two streams of work in
representing models of devices (or physiologica systems, since many of the ideas arose in the context of medica
diagnosis).

3.2. Causal Nets

The work by Weiss, Kulikowski and Amard (1978) is representative of this stream. (Belief nets of Pearl, 1986,
are not meant explicitly as device modes but they could be used to represent the causd rdations underlying it.) In
causal nets, a device's workings are represented as a network of causal relations between the variables
describing the system. An effect could be the result of more than one cause, and a cause could result in more than
one effect. One could introduce numerica weights in the links between nodes to represent some notion of
likelihood of the effect given the cause. There are a number of technica issuesin such representation which are
not important for my current purpose, but | want to draw attention to two related aspects of such networks. The
theories do not propose explicit criteriafor the levels of abstraction that should be used for the variables, and for
organizing the causa network. In this gpproach, these two decisons are | eft as part of the modding problem, and
are thus deemed to be domain-specific issues.

Let meilludrate the point by asmple example. A network in the domain of medicine may have two causd links
coming into anode labeled "headache':

high blood-pressure at blood vessels at the temple headache (Link 1)
infectious diseases of certain kinds headache (Link 2).

Note that both are true causd relations, but do not represent different causal mechanisms. In the former, a causa
explanation a the level of aphysologica mechanism is being offered, whilein the latter a disease-leve
explanation is represented. One of the waysin which diseases of certain kind might cause headache isin fact by
activating processes that increase the blood pressure level at the temples. The two relations are best thought of as
exiging a different levels of aostraction and indexed by different gods. The relation involving infectious diseases
is probably most usefully indexed by the god of "diagnoss™ The rdation involving the pressure leve & the temple
might not be activated a dl during diagnosis. On the other hand, for research on drug mechanisms, knowledge in
Link 1 might be directly rdevant and hence should be activated. The FR theory in this paper uses causa
networks, but provides task-specific criteriafor abstraction levels for the variables and organization of causa
knowledge.

3.3. Qualitative Device Models

Another stream of ideas on representing models is the work of de Kleer (de Kleer, 1984; de Kleer and Brown,
1984) and othersin that school. Devices (or physica systems) are modeled as having components connected in
specific ways. The components are specified as satisfying certain input-output relations. A description of the
device in terms of its components and their relationsis caled the structure of the device. The device can be
smulaed, i.e., vaues of al the variables could be derived using knowledge about components input-output
properties and about component interconnections. Such a description is termed the behavior of the device.
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Contragtingly, Forbus (1984) introduced the idea that the way to modd phenomenaisasaset of processes. The
physicd stuation is described in terms of processes a work in some domain of interest and their interaction. This
is the structurd representation. Behavior is generated by working out the consequences of interacting processes.
The process and the component perspectives are seen within the quditative reasoning community as competible
dternatives. some physica Stuations are best modeled as components interacting, some others as processes
interacting, while yet other as perhaps having both components and processes. | think, however, thet it is best to
take the process view as the basic one and think of a component view as a specia case. Component input-output
relations are then a specific type of process and physica connections between components a specific type of
process interaction.

Kuipers (1986) representation of structure is much smpler than the previoustwo: It issmply alist of Sate
variables and a description of how a change in the vaue of a date varigble affects other sate variable values. The
three representations, i.e., the componentia, the process, and the state variable relations, could be mutualy
trandated. One could take the set of al input and output variables of the componentsin the de Kleer
representation as the state variables of Kuipers and use the input-output component descriptions to generate the
description of how dtate variable vaues change as afunction of changesin the vaues of the other dtate variables.

Representationally, dl the above approaches describe the world as a set of Sate variables and the underlying
causal process as a st of relations between changes in the state variables. Thisis of course the standard
ontology[3] of physcs and system engineering. In the de Kleer picture, the Sate variables belong to the
components, the component descriptions give the causal relations between variables, the component connections
describe how the changes propagate. In the Forbus picture, the Sate variables belong to the processes which
a0 describe the causd relations between changes in the variables. In the Kuipers picture, the state variables and
their relations are Imply described, without a particular theory of whether the variables arise from components or
processes.

The Al researchersin quditative reasoning proposed an additional set of ideas about smulation, specificaly
quditative amulation. In their view, human inteligence is characterized by the fact that such structurd modds are
quaitetive, i.e, the causal relations are only described in terms of ranges of vaues rather than in terms of actua
values. Instead of giving the exact description of how a changein variablex causes achangein variabley, the
causd rdaionisonly given as"If x increases, y decreases,” or some sSimilar type of trend description. de Kleer
and Kuipers propose techniques for generating behavior using only such quditative relations. These approaches
are well-documented (e.g., see Forbus, 1988) and there is no need to review those techniques in detail here. We
will argue that goal-directed alocation of reasoning resources is amore useful characterization of human
intelligence than reasoning in terms of quditative ranges of vaues.

Another Al technique for reasoning about the world is consolidation (Bylander, 1988). Thiswork is based on the
observation that often, for predicting behavior, the structure of adevice is smplified in certain sysemétic ways.
Such agmplification can help avoid component-by-component smulation. For example, given two resgorsin
serieswe smplify that into one resstor. Especidly in eectrica devices and to some extent in dectromechanicd
devices such repeated gpplication of structurd grouping operations results in much smplified descriptions which
make smulation either much easier or even unnecessary. In circuits for example, we can smplify the resstance by
repeated application of formulae for series and pardle resstors, and Smply write down formulae for dl the
currents. Any quditative andysis can then be gpplied to this equetion.

In these approaches the behavior of the deviceis composed out of the behaviora description of the components,

processes or state variable relations. These techniques need to be complemented by other techniquesto provide
the following additiona cgpatiilities that are often needed:
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1. Device-level Vs component-level abstractions. In the quditative reasoning approaches that we described,
the terms in which the behavior of the device as awhole is described is the same as that of component-level
descriptions. For example, suppose we have an eectronic amplifier, and the device's Sructure is described in
terms of the components: the transstors, resitors, capacitors, etc. Let us say that each of these component
behaviorsis described in terms of their currents and voltages. All of the above techniques for smulation would
then produce a description of device behavior in terms of currents and voltages. However, the behavior of
interest of the device as awholeis as an amplifier, ahigher level of description. We need techniques by which the
device-level behaviora abstractions are related to descriptions at the component level.

2. Concern only with aspects relevant to the goal. The amulation techniques of quditative reasoning produce
the vaues of all the component-level state variables which are part of the model. However, many of the sate
varigbles may not be of interest to the god a hand. In the amplifier example, if we are interested in the vaue of
"amplification ratio” for some configuration of parameters, there may be no need to generate the vaues of the
currents and voltagesin circuits which play no causd role in the production of amplification. The computationd
work involved in the generation of vaues of dl the Sate variables may be reduced if we have agoal-directed
smulation strategy, and a representation which helps in identifying the dependencies and focusing the smulation.

3. Flexibility regarding detail. Human reasoning, whileit is largely quditative in the sense of reasoning in
ranges, is aso capable of invoking techniques for precise cdculation if quantitative information is needed. An
enginear might perform some reasoning using quditative information, formulate awell-posed numerica problem
that she might solve on paper or computer, and proceed with quditative reasoning again. That is, human
reasoning flexibly integrates computations of different degrees of accuracy and precison in agod-directed way.

The FR work that we review in this paper provides the complementary function-oriented view that is needed to
provide the above capabilities.

4. Functional Representation

The Functional Representation framework is a proposa about the top-down representation for goal-directed,
flexible reasoning that bridges abgtraction levels. It was origindly proposed in (Sembugamoorthy and
Chandrasekaran, 1986) for the causal processes that culminate in the achievement of device functions. (Some
devices achieve their functions by means of causal processes, while the function of othersis explained directly
from their structure. We discuss this distinction later, but for now consider only devices wherein causal processes
are the means for achieving the functions)) In FR, the function of the overdl device is described first and the
behavior of each component is described in terms of how it contributes to the function.

4.1. Informal overview

FR for adevice hasthree parts:

adescription of intended function (independent of how the function is accomplished),

adescription of the structure of the device, i.e., what the parts are and how they are connected to the degree of
detail chosen by the describer, and

adescription of how the device achieves the function, specificaly a process description.
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de Kleer (1985) introduced the terms "structure”’ and "behavior” formaly in the study of devices, and he aso
discussed the idea of "functions' as having to do with the teleology of artifacts. de Kleer and Brown (1983) dso
proposed a process description of mental models of how a device worked. Our work builds on some of these
notions.

The part of FR that describes the function treets the device as a blackbox, i.e., it makes no assumptions about its
interna dtructure, not to mention any processes that take place in the device. Thisis because the same function
may be achieved in different ways, and thus a description of the function itsalf should not make any commitments
about the structure. This may be caled the "No structure in function” principle, akind of converse of the "No
function in structure” principle that is due to de Kleer. Of course for describing a function we need to describe a
certain minimum amount of structure: how the device is to be embedded in the environment (e.g., whereit isto be
placed and how it to be connected), where on the device the operations to initiate the function are to be
performed (e.g., turning the switch on for an dectrica lighting circuit or an eectric iron), and where the functiond
output isto be redized (e.g., light near the bulb, heeat at the ironing plate). Other than this, we just need to
describe under what conditions what kinds of predicates are to be satisfied by the device in order for it to achieve
the function of interest. That is, afunction is represented by describing the context of its gpplication, the initiating
conditions and the predicates that the device hasto satisfy for it to achieve the function.

Of course FR as awhole enables us to combine this description of function with how the specific device achieves
it, by adding descriptions of structure and the causal processes which make the function happen in device. This
independence of the what of the function from its how isimportant to emphasize Snce this a point that is widdy
understood to be an important desideratum for representing function (e.g. Brgnik, et d, 1991, Chittaro, et d,
1993, Kaindl, 1993), while some of these writers gpparently and mistakenly believe that FR does not maintain
this digtinction.

Representing the gtructure is sraightforward: we smply list the component names and their functions and indicate
how the components are put together to make the device, i.e., describe the relations between the components.
The components functions are described using the same ideas as in the description of the device function. We
give examples of such descriptions later in the paper.

The basic ideain describing how the device achieves the function is that we need to construct a causal process
description (CPD) of acertain type. That is, we describe how the device goes through a causal state trandtion
process in which the initid date is the sate of the device just a the time the device "darts" the find stateisthe
date a which the device is achieving the function for which it is designed, and each date trangtion is explained by
appeding to knowledge about components or the domain. The ideathat abehaviord description of the deviceis
the link between structure and function has been stated often in the Al literature -- from the early works of de
Kleer to Gero et a, 1992 -- but our proposal on CPD takes a very specific stance about what kinds of
behaviora descriptions have the explanatory power needed to explain the function and bridge the levels of
abstraction between component-level and device-level descriptions.

A CPD can be thought of as a directed graph whose nodes are predicates about the states of the device, and
linksindicate causd trangtions. The links have one or more annotations that explain the trangtion. The
annotations, according to the theory, belong to certain specific types.

Condder asmple dectricd circuit with aswitch, a voltage source and aresigtor. Let us say that the function we

areinterested in is production of heat. A causal account of how this function comes about might be given as
follows
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A->B- >C->D- >E
where A is'switch ison’
B is'voltage gpplied between terminas
Cis'current to flow in the circuit’
D is current flows through the resstor’
E is'heat generated.'

Normaly "->" can beinterpreted as "causes." The CPD isnot aneutra description, but one that is oriented
towards explaining a sdlected function. If the function of interest is the production of light and the resstor was a
filament ingde alight bulb, thelink D E, might reed asfollows

D is current flows through the resistor’
E is'light generated.’

Of course the heat through the resstor dso produces hest. If we are interested in explaining the production both
of light and heat, the graph might look asfollows:

A->B->C- >D >E
\->E'

where E corresponds to production of light and E' to production of hest.
Now let us examine how the trangtions might be explained.

"A ->B" : "Closng the switch causes voltage to be gpplied between the terminds of the circuit.” In explaining this
trangtion we use knowledge about "closing” function of switch (the component "switch™ has two functions, "open”
and "dose") and the "voltage" function of "battery.”

Thetrandtion "B -> C," "the gpplication of voltage causes a current to flow through the circuit,” invokesthe
connectivity-providing functions of the various connectors, and aso uses adomain law, viz.,, Ohm's Law.
Checking the connectivity functions of the connectors ensures that the structure isin fact a circuit. Ohm's Law can
be used to provide quditative or quantitative information about the quantities involved.

Thetrangtion "C -> D" asserts that "current flowing through the circuit means that there is current through the
ressor.” This particular trangtion is not normaly viewed as a causd trangtion. The explainer issmply inferring a
predicate of interest, in this case, that there is current through the resistor. The explanation gpped s to the meaning
of adircuit. If we want only causa links, we can collgpse the two linksinto one, "B -> D," assarting, "Application
of voltage causes current through the resistor.” The explanation would gtill apped to the connectivity functions of
the connectors and to Ohm's law.

The trangtion "D -> E," asserting that "current through the resstor causes hest to be produced,” can be explained

in different ways. One posshility isto smply point to the scientific laws that relate eectricity to heet production in
aresgor, smilar to the way Ohm's Law was used earlier. Such alaw can be given in anumericd or quditative
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form, as needed. In this case, the link would be annotated as "By domain-law (current-to-heet equation).” In this
explanation, the domain law is taken as a primitive explanation, satisfactory for the current problem solving gods.

The same trangition can be explained by appedling to another process. how dectricity gets converted to heet. The
link would have the annotation "By - CPD(electricity-to-heat)." Someone who aready understands this process can
useit if needed and build the more detailed (and longer) causd story. This causa process can be explained
separately for some one who doesn't dready understand it.

To summarize the various explanatory annotations:

I. By- cPD: This points to another CPD that provides further details of the trangtion. The details of the CPD may
not matter for the current purpose. If they matter, the CPD may be part of the prior knowledge of the agent, or
can be explained separately. Potentialy long process explanations can thus be hierarchically composed out of
other process explanations, making explanation at each level shorter. (The Abel system of Petil, et d, 1981, uses
asmilar gpproach of describing causd chainswith hierarchicaly increasing details.)) CPD's (such as"bailing” in
commonsense physics, or "eectricity-to-light production” in the circuit example) can be reused, possibly after
ingtantiating some parameters (e.g., the pressure at which the boiling is done, the liquid thet is being boiled, and so
on). Human expertise in a domain contains knowledge of alarge number of such causa processes that can be
parametrized and re-used.

ii. By- Funct i on- OF -<component> : This annotation gppedls to the function of a component as the causal
explanation of the trangtion. A maor god of causal explanation in devicesisto explain the behavior of the device
in terms of the properties of the components and their inter-connections. Again, alarge part of expertise of human
expertsin adomainisin the form of knowledge about generic components and their functions (though, in many
cases, how the component functions may not be known). The ability to explain the device functions partly in
terms of component functions, and to explain component functionsin turn in terms of the functions of its
subcomponents helpsin the formation of functiona/component hierarchies in explanation and design. Also,
components with different internd structure but the same function can be substituted.

iii. By- Domai n- Law <law>. Another form of explanation is by apped to domain laws. In the domain of
engineering, scientific laws are the ultimate basis of explaining why the device behaves as it does. For example,
the dtate trangtion, "5 Volts at the input -> 2 amps through the load" might be explained as

"By- Domai n- Law( Ohm's-Law: Voltage = Current * Resistance)".

For aparticular device, any redigtic FR description will taper off at some level of components and CPD's. The
termsthat are used at the lowest leve of description are themsdves undefined. In explaining to humans, these
terms are assumed to be part of the commonsense knowledge. For machine processing, the terms at the lowest
levels of description are just strings of symbols. Thus every FR is inherently incomplete,

Non-causal links Sometimes additional, noncausd, links may need to be added to arrive at the predicate of
interest. For example, for an amplifier, we may have congtructed the CPD,

Voltage 1 at theinput -> ...-> ...-> Voltage 10 at the output,
but the function that needs to be explained might be "Amplification of 10." A non-causd, definitiona/abstraction

link can be used to arrive a the node "amplification of 10" from "Voltage 10 at the output.” Such links can be
used to indicate an inference thet follows from predicatesin the earlier nodes,
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We have used examples of four types of waysin which alink can be explained: appeding to the function of &
component, acausa process, adomain law, or some non-causa inference. In the body of FR research, the set of
annotations has been somewhat open-ended and evolving. In the origind paper (Sembugamoorthy and
Chandrasekaran, 1986), we had made finer digtinctions for the By - knowt edge link, and also proposed a

"By- structural -assunptions" link. The lagt link was supposed to handle situations where the structure as
given was not sufficient to justify the causdl trangition, but with some additional assumptions about the structure,
the trangtion would work. In the newer versons of the FR language, we include such requirements under various
kinds of quaifiers. Vescovi, et d (1993) have identified another link, caled "By parti ci pati on- of
<component>," to account for the Stuation where some aspect of the component not explicitly identified asits
function plays arole in some Sate trangtion.

Qualifiers: In addition to the explanatory annotations, the links may have qualifiers which state conditions under
which the trangtion will take place. In FR the qudifier Pr ovi ded( p) isused to indicate that condition p should
hold during the causd trangtion for the trangtion to be initiated and completed, and | f (p) to indicate that the
condition p should hold at the moment when the causd trangtion isto sart. The conditions can refer to the states
of any of the components or substances. Many of these quaifiers are eventudly trandated as conditions on the
sructura parameters.

4.2. Componentsof FR

I will use arunning example of adevice caled aNitric Acid Cooler (NAC) (Godl, 1989) to illudtrate the various
aspects of FR. Figure 2 is a schematic of the device (NAC).

4.2.1. Sructure of a device

The Structure of adevice is a specification of the set of components that congtitute the device and the relations
between the components. The components are represented by their names and by the names of their functions,
which are dl domain-specific strings. Components and functions can have varigbles for its parameters and thus
may describe classes. In the NAC example, component classpipe(l,d) describes pipeswith length | and diameter
d, while pipe2 isaspecific ingance of pipe(l,d) with specific valuesfor | and d. Smilarly, the device NAC asa
class has afunction cool-input-liquid(rate, temperature-drop) where rate and temper ature-drop are capacity
parameters of the function cool-input-liquid. A particular NAC might be identified by specific vaues for these
parameters. Devices can have substances whose properties are transformed as part of their functions.
Substances can be destroyed and new substances created. Substances can be physica (e.g., nitric-acid) or
abstract (e.g., heat). In the NAC example, the substance nitric-acid has properties temperature, flow rate,
and amount of heat (which itsdf isasubstance).

Components have ports at which they come together with other componentsin certain relaions. For example,
the component type "pipe" might be written as pipe(l,dt1,t2), where| and d are the length and diameter, and t1
and t2 are the input and output ports. Components are configured in specific structural relationsto each other
to make adevice. In an dectrica circuit, eectrica components are electrically-connected at the defined
terminds. In the NAC example, the relations include conduit-connection, containment, etc. (The relationd
vocabulary can aso include unintended reletions, e.g., electrical leakage between electrical components The
components can be in unintended relaions to each other as aresult of mafunctions)) The vocabulary of relaions
is domain-specific. The semantics of the relations are established by the domain laws that govern the behavior of
the components in the given relations.
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Figure 2. Schematic of aNitric Acid Cooler

The FR language uses the following keywords for describing structure:

St ruct ur e((Devi ce(<device-name>, <functional parameters>, <ports>)),
Conponent (<component-name>, <component parameters>, <ports>),
Funct i on(<component>),

Rel at i on(<relation{ <component, port>,....<component, port>} >).

The gtructure of NAC isgiven in Figure 3.

st ruct ur e((Devi ce(NAC; cooling-capacity and temperature parameters; ports. p1, p4, p5, p7))
Conponent s: pipel(ll, d1; pl, p2), pipe2(12,d2;p2,p3),
pipe3(11,d1;p3,Output)

Heat-exchange-chamber (<dimensions>, Input-port, output-port)
Water-pump(Input, Output)

Funct i on(pipel): Conduit (input, output)

Funct i on(Heat-exchange-chamber): exchange-heat(<parameters>)
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Rel at i ons: Corponent (pipe2) contained-in Conponent (Heat-exchange-chamber)
Conponent (pipel) conduit-connected (pipe2) {Por t s: <information about ports>}

Component (Water-pump) conduit-connected Conponent (Heat-exchange-chamber) {Por t s: <information
about which ports of components are connected; e.g., Input-port of Heat- Exchange Chamber isthe same as
the Output of Water-pump>}

Figure 3 Structurd description of NAC

Inthe figure, the termsin italics are domain-specific names for functions, components, relations, etc. The
interpreter for FR trests them as strings. Thetermsin Cour i er aretermsin FR. Additional domain-specific
interpreters may be able to use the itdicized terms as meaningful keywords. For example, a mechanica smulator
can use terms such as contained-in and conduit-connected to perform smulations. For the purpose of this
expogtion, they are to be understood in their informa, English-language meanings. The syntax of the Rel at i ons
keyword isthat an n-ary relation has n components and apor t s term indicates which ports of the components
are connected. Note that the components are described purely in terms of their functions. This makes it possible
in principle to replace components by sructurdly different but functiondly identical components. Further, the
components themselves can be represented as devicesin their own terms.

4.2.2. Sates and Partial Sates

A device stateis represented as a set of state variables {Vs} conggting of vaues of dl the variables of interest in
the description of the device. State variables can be either continuous or discrete. In particular, some of the
variables may take truth vaues { T,F} astheir vaues, i.e, they are defined by predicates. An example of a
continuous variableiswater temperature in adevice that uses water for cooling a substance. An example of a
variable defined by a predicate is " ?open(valve)" Thisvariable will take vaues T or F depending upon whether
the valve is open or not.

In describing functions and causal processes, we generdly tak interms of partial states of the device. A partia
date is given by the vaues (or some congtraints on the values) of asubset of state variables. For example, the
partid gate (cal it statel) of NAC (describing some relevant state variables at the input pl of the device can be
given as{substance: nitric acid; location(substance): p1, temperature(substance): T1}. State2, describing
the properties of nitric acid a location p2, will only differ in the location parameter, while the partid Sate
description, state3, at location p3 will be{substance: nitric acid; location(substance): p3,
temperature(substance): T2}, where T2 < T1.

4.2.2.1. State Description Languages

The language in which gates are represented is itself not part of the representationa repertoire of FR and is
largely domain-specific. In economics, the state variables would be entities such as GNP, inflation-rate, etc; in
nuclear-plants, an entity might be radiation-level. God (1989) has defined a state description language which is
useful in describing devices that ded with materid substances that change locations, eg., those in which
substance flow isauseful notion. The State representation that we just used for NAC usesthis language. In
NAC and many other domains a state can be represented by areal number, a binary predicate or a vector of red
numbers and predicates.
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4.2.2.1.1. Shape-based states

In principle the states can be images or shapes. For example., when we want to describe the causal process
corresponding to the flow of hot molten metal into molds, the rlevant intermediate states may be shape
descriptions. (See Chandrasekaran and Narayanan (1990) and Narayanan and Chandrasekaran (1991) ) for
some descriptions of work relating to such visua smulations)

4.2.2.2. State Abstractions

Condder adevice which, at one level of description of states, has one of its State variables, say s, going through
the following partiad satesrepdtitively: {-1, 0, 1}. That is, the Sate variable is ostillating around 0. Suppose we
define another state variable ?oscillating by a process of abstraction from the values of s over time. Thiswould
be abinary variable taking on the value Yes if the values of sare cycling through {-1, 0, 1} and No otherwise.
Allemang and Keuneke (1988) discuss a number of issuesin creating such abstractions. (See d'so Weld, 1986.)
Which gate variable behaviors are abstracted and in what way are determined by consderations outsde of the
physica system itsdlf. In fact, al descriptions of physica sysemsat any level presuppose and arise from a set of
problem solving goas. Whatever date variables we use to describe a system at the lowest level can themsalves
be defined from such a process of abstraction from physica behavior a even lower leves, there redly is no way
of representing any red-world system in atruly neutral way.

4.2.3. Causal Process Description

Formally, the causal process description (CPD) (see Iwasaki and Chandrasekaran, 1992) isadirected graph
with two digtinguished nodes, Ninit, and Nfin. Each node in the graph represents a partid state of the device.
Ninit corresponds to the partid state of the device when the conditions for the function are initiated (such as
turning a switch on). Nfin corresponds to the state where the function is achieved. Each link represents a causal
connection between nodes. One or more qudifiers are attached to the links to indicate the conditions under which
the trangition will take place, and one or more annotations can be atached to indicate the type of causa
explanation to be given for the trangtion. The graph may be cyclic, but there must be a directed path from Ninit
to Nfin.

In the NAC example, let nodes statel, state2 and state3 correspond to the states of nitric acid at the input to
pipel, at location p2 and and location p3, respectively. Figure 4 depicts the CPD graph (without any annotations
or qudifiers) describing what happens to the nitric acid and the water as they flow through the chamber. In the
figure, the nodes are described in informa English, but they can be described more formadly smilar to my earlier
description of statel.

4.2.3.1. Annotation of linksin CPD

Thisexample will illugtrate the use of three types of annotation for explaining causd trandtions: gppedling to
another causal process, to afunction of a component, and to domain laws (so-caled firgt principles of the
domain). It will dso illugtrate the use of some qudifiers, which are conditions on states or device parameters for
the trangition to take place.
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Figure 4: CPD'sfor device NAC (without link annotations). statel, state? and state3 are described more
formdly in the text. The trangtion from state2 to state3 is described in Figure 3 with annotations and qudifiers.

Figure 5 shows one fully annotated causal trangition in the Nitric-Acid-Cooler. It uses two functiona and one
domain law annotations, and uses conditions on the structure and substances as qudifiers. The qudifiersinclude
conditions on the properties of the substance (it should be aliquid of low acidity) and structura conditions (the
chamber fully encloses pipe2). Note that atrangtion may have more than one annotation or qudifier.

atate? atate3

Ey-function allow-fow (subsiance) of
pipeld| endd, endd, spacel|
Qualifier : (substance(properiystote-of-matter: " Bquia™, acidite: “Bw™)))

Bv-function aliow- fow (heat) of
{oides-of {pipe2 |endd, end2, space?] |

Domdin-law: Eerorhk-law-of -chermo-domnamics

Qualifiers: (approprinte encdlosires of pipes in chamber)
Figure 5. Annotations and qudifiers for a causd trangtion in NAC
4.2.4. On Functions

4.24.1. Types of Functions

Keuneke (1989, 1991) has identified four types of functions: Tovake, ToMai ntai n, ToPrevent, and
ToCont r ol . (Franke, 1991, on device properties such as "guarantee,” "prevent,” etc. is motivated by quite
smilar ideas.) Formd definitions of these function types have been developed (Iwasaki and Chandrasekaran,
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1992), but for our current purposes the following informa ones should suffice. All the function types above
except ToCont r ol take asargument apredicate, say PF, defined over the Sate variables of the device. The
function isof the Tomake typeif the god isto make the device reach agtate in which PF istrue, and after that
date is reached no specific effort is needed to keep the predicate's value to True, or it doesn't matter what state
the device goesto after the desired Sate is reached. A function is of type ToMai nt ai n if theintention isto teke
the device to the desired state and the device has to causdly ensure that the predicate remains Truein the
presence of any externd or interna disturbance which might tend to change the device sate. The function typeis
ToPrevent if the god isto keep PF from ever being true, and some active causal processin the deviceis
required to ensureit. (Whilelogicdly ToPr event P can be written as ToMai nt ai n (Not P), there are important
differencesin practice. Pragmaticaly, a designer charged with making sure that the device doesn't explode uses
knowledge indexed and organized for this purpose. This prevention of explosion -- say by usng athick pipe-- is
not the same as maintaining some dynamic sate variable in arange. The function type ToCont r ol takesas
argument a specified redation vo = f(v1,...vn) between Sate variables vo, v1,...vn, and the intent isto maintain
this relaionship. That is, we wish to control the values of specific variables as a function of the values of some
other variables.

A function F thus has the following descriptive e ements:

Funct i on (<function-name>)

Devi ce (<device-name>)

Type (<one of the above types>)

St ar t - Condi t i ons(<conditions>; the conditions under which the function will be initiated)

Functi on- Predi cate Or Control - Rel ati on( <predicatelcontrol relation>; the predicate that has to be
reached, maintained or prevented, or the control relation that has to be maintained)

By- CPD(<set of causal-process-descriptions>; explains how the function is achieved)

Condder the example of aNitric Acid Cooler in Figure 2. Hot nitric acid goesinto a heat exchanger and
exchanges heat with the water that is being pumped in. The water gets hotter while the acid gets cooler. The
functiona definition of NAC can be given as follows.

Funct i on (Nitric-acid-cooling)

Devi ce (NAC)

Type (To- Make)

St art - Condi ti ons(Input temperature of Nitric Acid =T1)

Funct i on- Pr edi cat e( Outlet temperature of Nitric Acid =T2, T2 <T1)

By- CPD(CPD-1 in Figure 4)

The complete FR is given by specifying the device name, its structure, the state variables of interest, the functions
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of interest, and the functiona template including the CPD's. We have described the representationd primitives
needed for dl the above. Many implementations exist for the FR language, with somewhat different syntax in each
implementation. We have used a composite syntax, chosen mainly for expository effectiveness. We have
uppressed many details by giving English language descriptions of the intended information within parentheses or
curly brackets. For example, we say "qual i fi er s: (appropriate enclosures of pipesin chamber)" in Figure 5. A
detailed syntax for representing the relevant relations about pipesisin fact available and used in (Godl, 1989).

Function types such as "To- Mai nt ai n" and "To- Prevent " goply not only to engineered artifacts, but to
reasoning about natura phenomenaaswell: eg., "The centrifugd force preventsthe satdllite from escaping into
space," and "the rainfevaporation cycle maintainsthe sdinity of the oceans.”

4.2.4.2. Passive Functions

Sofar, dl of our discusson of function has been in the context of temporaly evolving causa processes. Keuneke
(1989) made a digtinction between "active" and "passve’ functions. A chair satidfies the function of providing a
seet for aperson, but normaly we don't explain this functiondity by giving a description of state changes that the
chair goesthrough as a person stsonit. Thisis not to deny that such a description can be given, but smply to
point out that the function is normaly explained as a match between the structura properties of the chair and how
that meets the need for providing a seat. Similarly, aflower arrangement provides the function of decorating a
room. Again, adescription of how it achieves this function can be given by describing some processin which a
viewer goes into a date of enjoyment, but the flower arrangement as such is not explained as something that
undergoes a process involving sate trangtions in order for it to achieve the function.

In these cases, the object achieves afunction smply by virtue of its structurd properties. Such devices can ill
have parts and parts may have functions as well, and the device function as awhole will ill arise from the parts
achieving thair functions. For example, in describing how a chair achievesits function, one might say a the top
level that achair has the structurd property that a component with function "support human bottom comfortably”
is attached in acertain physica relation to a component with function "devate the device from the floor a a height
equd to the length of average human legs,” and optiondly and in a certain physica relationship to two
components with functions "support ams." Each of the component functions can be defined in terms of certain
structurd properties.

With the exception of arecent thesis by Toth (1993) wherein she considers the functions of mechanica structures
(such asframes and trusses), there has not been much work in the FR framework in representing such passive
functions. In visua recognition, there has been some work (e.g., Stark and Bowyer, 1991, Brand, et a, 1992,
Rivlin, et d, 1993) in usng such functiond notions to recognize the identity of objectsin avisud scene,
Traditiondly, programs for recognizing chairsin scenes would have some sort of a structura template or
description of achair, and the recognition process would congst of trying to match this template againgt the visud
scene. In this gpproach the recognition system can only recognize types of chairs for which it has a structura
description. On the other hand, a person who has never seen a bean-bag chair might recognize it as a chair.
Function-based recognition may actively use the hierarchica functional mode of what makes achair achair,
namely, it has parts that serve the role of a seet, and so on, to check if the object can serve the function.

4.2.4.3. Content-theory of functions

In pecific domains, we can devel op theories of dementary functions that can be combined to make more
complex functions. When the domain involved is of greet generdity, such as mechanical force transmisson, such a
content theory can be widely useful. Hodges (1992) has developed a set of useful basic functionsin the domain
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of physcd objectsinteracting by means of their shapes. Examples of such ementary functions are: linkage,
lever, gear, pulley, screw, spring, and container. These functions themsdves are defined in terms of a
vocabulary of state change operations, such as move, constrain, transform, and store.

4.2.4 4. Functions: Intrinsic to Objects?

How closdly should functions be attached to object descriptions? There has been much debate about the
distinctions between “function,” "behavior,” and "use" Thereisaview that functions of an object are grictly
outside of asupposedly moreintrinsic behaviora description of an object. That is, functions are a separate
ontologica category from behaviors, and behaviors are part of aneutral description of objects. Y et another
proposa atempts to make a distinction between the "use' made of an object and itsintringc function.

Any description of an object makes choices from available descriptive terms. The behavior of aphysica object
might be described by one observer in terms of currents and voltages, while another observer might describeit in
terms of amplification. The former description is no moreintringc that the latter, snce the description in terms of
currents and voltagesis dready based on a point of view which chooses both to omit certain things about the
object (e.g., color, weight, etc., in the case of a circuit) aswell asto commit to a certain level of abstraction (the
same object could have been described in terms of more fundamental physical phenomena, say its aomic
behavior).

Thereisthus no completely neutral description of an object's behavior. We have proposed to interpret "function”
as adistinguished behavior of interest for some observer. Thereis no commitment to the use of the object for a
purpose. However, someone who uses an object in a certain way is an observer for whom the behavior of
interest is the one that corresponds to her use of it. Thus, in the sense in which we propose to use the terms, the
representationa terminology for "use’ is the same as that for "function” which is the same as thet for "behavior."
Function is smply abehavior of interes[4], and use of adevice in a certain way is possible because it is capable
of behaving in that way.

What is the function of athermostat? To keep the temperature in aroom in agiven range? To regulate the flow of
electricity to the hester as a certain function of temperature? To regulate the flow of eectricity asafunction of a
specified spatid distance insde bimetallic strip? None of these descriptionsisintringc to the piece of matter that
we cdl thermostat. Depending upon how we modd the embedding context, dl of the above descriptions can be
supported. Consider the following CPD: (T < T1) strip curlsin end makes physical contact switch closed
furnace is on temperature increases.” If we modd the thermostat as embedded in the physicd circuit, we can stop
the "intringc" description of the thermodtat at "end makes physica contact.” If the embedding context is modeed
asthe dectricd circuit, the thermostat description can go up to "switch closed.” And so on. Thereis nothing
intringc about it, though clearly there may be some conventions regarding well-known devices about where we
normally stop.

The nation of an intringc leve of description for physca objects comes from a beief in reductionism that dl of us
have been raised on, namely, that physics gives us the fundamentd leve of redity, and dl other higher levels can
be reduced to it. That might be an appropriate doctrine about the nature of reality, but reasoning about the world
requires levels of description corresponding to levels of interest. Our knowledge of causdity ties descriptions at
various levels. events both within levels and between levels are causdly linked. A theory of reasoning about the
physica world cannot be based on areductionistic "intringc” physica description.

4.3. Remarkson FR
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1. Nodesin CPD are partial states. The nodesin the graph are partid dates, i.e., predicates about some
aspect of the device, not a complete description of dl the states of the device.

2. The level of abstraction of the predicates in the CPD is at the level needed for the causal story. Some of
them may directly correspond to component-level state variables, while others may have only adevice-leve
exigence. In the CPD in the dectricd circuit example, heat and light are device-level Sate variables, while
voltages and currents and the off or on status of the switch are component-leve variables.

3. FRis underdetermined by the underlying structural description: The form an FR takesis not unique. For
the same physicd system, not only are there different FR's for different functions, but even for a given function,
different FR's can be written. The differences would reflect different assumptions about background knowledge,
different decomposition strategies, and, to some extent, different intended uses for the FR. Suppose the FR
mode is going to be used for diagnostic purposes. Appeding to the domain laws that relate current to heat might
be sufficient if dl we want to do isto check whether the resitor is faulty and if so to replace it. However, for
inventing different types of materias for making the resstors, amore detailed CPD that refers to the properties of
the resstor materid may be more useful as an annotation for the same link. It should be emphasized, however,
that being goa-dependent is not the same as being arbitrary or smply subjective. The FR is il intended to
represent redity, but what aspects are chosen and what levels of abstraction they are represented in depend on
the problem solving godl.

4. The CPD integrates the "object" and the "process’ views The CPD'sin the FR view integrate the
process (Forbus, 1984) and object (de Kleer, 1984) views in modding a physical system. Components have
functions which are redized through CPD's which in turn gpped to functions of other components.

5. FRand CPD's Capture Causal Understanding in General. So far, we have talked about functions of
devices, i.e, rolesintended by designers or users for some physica objects. But, as stated earlier, the FR
framework isredly aframework for causa understanding, not just for representing functions of engineered
atifacts. Condder the following questions:

i. How doesthis device work (i.e., deliver the intended function)?

il. How does cancer "work"? (i.e., what is the mechanism of cancer?)

iii. How do clouds make rain? How are mountains formed?

iv. How does the immune system work?

v. How does this program work? this agorithm work?

vi. How is gticking pinsin the doll going to bring my lover back? (i.e., how does voodoo work?)

Quedtion i of course captures the traditiona notion of function of an engineered device. In question i, cancer is
hardly an intended function. The questionsin iii are about natura phenomena. The scientific temper of our times
would be inimica to talking as if clouds have an intended function to make rain, or that geologica processes were
intended to form mountains. Regarding question iv, the theory of evolution alows to talk about the function of
immune systems (to give bodies immunity from infections) and the function of heart (to pump blood). In question

v, we do not have a physica object at dl, but an abstract object of some sort, and we il often talk about it in
the same way as we talk about causal processes in physica objects. In question vi, while the particular voodoo
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practice has an intended function and the voodoo practitioner islikely to give acausa account, it is not something
we would bdievein.

Let usfirgt consgder cases in the above which correspond to physical phenomena (i to iv). If we interpret the
term "function” not in the sense of an intended State, but in the sense of arole or state of interest, then we can see
that the casua accounts that are needed to explain the phenomena are of the same type as those we are
attempting to capturein CPD's. That is, we are interested in explaining the occurrence of a distinguished state
of interest: ini, the device reaches a sate corresponding to the intended function, in ii, the celular mechanisms
reach a cancerous state, in iii, acollection of water molecules with certain properties reach a state corresponding
to forming rain, and in iv, the body reaches a gate in which invading organisms are destroyed. The functiond
date in an artifact isjust atype of distinguished Sate of interest.

In the case of abstract systems such as programs (question v), we gtill have components (modules in programs),
their functions (i.e,, they have identified roles to play in the achievement of the goa), and structure (control
sructures for programs that define how the modules are invoked and their results used). We talk about program
dates changing as aresult of certain operations. Allemang (Allemang, 1990; Allemang, 1991; Allemang and
Chandrasekaran, 1991) constructs FR's and CPD's for computer programs. It is beyond our current scope to
discuss the metgphysics of how notions of a causa process apply to mathematical objects such as programs, but,
a least formdly, the FR machinery is both gpplicable and ussful.

Quedtion vi isinteresting in ancther way. The causd dory it tdlsis, at least according to the lights of science, a
fdse one. But what isinteresting is that such an explanation has the same logica structure asthe causd ory that
ascientist would construct for anatural phenomenon. The explanation of the voodoo process probably goes
something like, "Sticking of the pin causes such and such spirits to be awakened who in turn do such and such
things..." If asked for an explanation of each causal trangition, explanaions are likely to gpped to the functions of
the various spirits, some recognized causa process in the voodoo theology or some recognized domain relations.
That is, what makes the voodoo explanation fase is not the form or logic of the explanation, but the phenomena
that are appeded to in the explanations.

The point of the above discusson is that the underlying framework for capturing the logic of causal mechanism
explanation has broader gpplicability than just to engineered artifacts. The framework itsdf can be thought of in
terms of explaining how certain distinguished states of interest are or are not caused, and what roles parts of the
configuration play in this process. When we design an artifact with afunction in mind, we want to creste a
configuration which can reach sates that satisfy the predicate corresponding to the function of interest, and we
want the various parts of the device to play certain causdl rolesin this process. When we debug an artifact thet is
mafunctioning, we want to know why the configuration is not reaching certain distinguished states of interest. But,
the logica form of the explanation of the causd processesin the engineering domain is itsdf independent of the
notions of desired or undesired functions.

In whet follows, we will in generd talk about engineering artifacts and thelr intended functions, but it should be
kept in mind that many of the points we make can be restated with respect to the generd problem of
understanding causa processes of configurations, physical or abstract.

4.7. Applications of FR

The FR framework in its various forms has been used for avariety of problem solving tasks. In this section, |
review, in varying detail, anumber of tasks for which it has been used.
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4.7.1 Generating Causal Explanation By Smulation

4.7.1.1. The Problem Statement

Condgder the following problem: Given a set of observations and a diagnostic hypothesis, congtruct an explanation
of how the hypothesized mafunction caused the observations. That is, congtruct a set of causal stories each oh
which gstarts with the hypothesized mafunction and ends in one or more observations. In the following, | describe
the work of Keuneke (Keuneke, 1989) on the use of FR for solving this problem. Technica definitions of afew
terms may be useful:

Observations: observable state variables. Some of the observations are called Symptoms, which are abnorma
date variable vaues indicative of mafunctions and trigger the diagnostic process, e.g., specification of adrop
from normal pressure. Mafunctions are observations which correspond to device-level functions not being
delivered. (Mdfunctions are symptoms as well.) The rest of the observations give information about the state of
the device, but are not immediately classfiable as abnormdities. Most observations on acomplex system are of

thistype.

Diagnostic Hypotheses. These are mafunctions of components or missing (but expected) relationships between
components. A missing rdaionship would eventudly result in the enclosing subsystem being a mdfunctioning
component.

Causal Explanation: A CPD that starts with a diagnostic hypothesis and ends with one or more observations to
be explained. The explanation sought can be formdly stated as follows:

diagnostic hypothesisx1 -> ....-> Xi ...-> xN ...

where each xi is either (1) a gate which is causdly relevant in producing an observation, but isitsdf not a
malfunction, (2) acomponent or subsystem mafunction, or (3) an observation at the device-leve[5]. In
Keuneke's work, the diagnostic hypothesisis assumed to have been generated by some form of "compiled"
reasoning, and FR is used to verify if the hypothes's makes causa sense.

4.7.1.1.1. Generating the Mdfunction Causd Chain

The organization of afunctiona representation gives both forward and backward reasoning capability, i.e., it can
trace from the hypothesized mafunction to observations (forward), or it can trace from observations to the
hypothesi zed mafunction (backward). This section describes an dgorithm which demongtrates the forward
samulation potentia[6].

Specificaly, if device A is mafunctioning, then devices which use device A (say devices B and C) have ahigh
probability of mafunctioning aswdl. Smilarly, devices which use B and C may mdfunction, etc. The mafunction
causd chain is achieved through the following agorithm which has been condensed to illustrate main points.

1. Set Observations to the symptoms to be explained, and set HypothesisList to the set of diagnostic hypotheses.
Initidize Hypothes SObject to an individua diagnostic hypothessin this set (diagnosed hypotheses and thelr
relationship to observations are consdered individualy).

2. ldentify the function that the Hypothes SObject names as missing. From the FR of the device, find dl functions
which make use of this function, cdl this set PossbleMdfunctions.
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3. For eech dement in PossibleMdfunctions (cdl the specific function PossMa) consider the significance of the
effect of Hypothes SObject on the function.

if no effect on PossMd then remove from PossibleMafunctions --- HypothesisObject is not causing future
problems. Congder the next dement in PossbleMafunctions.

else maintain (Mafunction -> Mafunction) explanation chain; HypothesisObject is now known to cause a
malfunction to PossMd. Specificaly HypothessObject -> PossMad is gppended to chain. Note that this step will
ultimatdy place any potentid mafunctionsin a mafunction chain, including those which are in the st of
Observations. Continue.

4. Check the states in the causal process description of the affected PossibleMafunction. Would noncompletion
of these states explain any symptom(s) in Observations?

if yes, gppend to ExplainedSymptoms and print the chain which led to this symptom. Complete the mafunction
explanation chain by continuing.

5. Set HypothesisSObject to PossMadl.

6. Repeat process from step 2 until al symptoms are in ExplainedSymptoms or the top level causa process
description of the device has been reached.

7. The Process from step 1 is repeated until dl elements of HypothesisList have been considered.

Sep 2 is eadly accomplished through the component hierarchy of the functiond representation (see example to
come soon). Seps 3 and 4 are more intricate and involve knowledge of function type (such aswhether itis
To- Make, To- Prevent , €tc.) and the achievement of the intended causa processes.

For example, in Step 3, to determine the effects of amafunction on other functions, one must consder the
possible consequences of mafunctioning components. In generd, the mafunction of a component in a device can
cause one or more of the following three consequences.

NOT Function: expected results of the function will not be present. Given that the mafunction is not
producing the expected results within the causal process, what states in those causa processes will
not occur? And, will the lack of this functiondity cause the mafunctions of functionsin which the
malfunctioning component was used?

Parameter Out-of-Range: expected results of the function are affected, but function is il
accomplished to alimited degree. Sometimes components may be consdered mafunctioning yet
can gill perform the function (or vaue of some substance parameter) to the extent needed for future
use.

New Behaviors: the mafunction resultsin behaviors and states which were not those intended for
normd functioning.

The determination of whether a proposed mafunction can explain a symptom, step 4 in the explanation agorithm,
can be established by a number of means. The following is a non-exhaudtive list:
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1. Check each dtate in the causal process description where the mafunctioning component is used
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to seeif thereisadirect match between a symptom and not achieving an expected Sate.

2. Check to seeif the function which is mafunctioning has an explicit mafunction causal process

description and if the symptom isincluded theran.

3. Check to see if Sde effects of the function's causal process description refer to the variables

involving the symptoms.

4. Check each gate in the mafunction causal process description and its provided clause to seeiif

expected states point to general concepts or generic classes of behavior (such as legk, flow,
continuity) and if the symptom pertainsto or is explained by such concepts.

4.7.1.1.2. Representation of a Chemica Processing Plant

This section provides the output for an example explanation in the domain of chemica processing plants (CPP).
The hierarchy in Figure 6 shows a partia representation of the functionad components with their intended functions
(functions are specified under component names). The top level function, produce.acid, is achieved by the causa
process oxidation shown in Figure 7. The function hierarchy is generated from the CPD's for the FR of the plant.
For example, the CPP uses the functiona components LiquidFeedSystem, AirFeedSystem, TransferSystem, etc.

in the process oxidation which represents the causa chain used to achieve the function produce.acid; the

TrandferSystem uses the functional components, AirFeedSystem, MixingSystem, etc., in its causal processto

achieve the function extraction, and so on.
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The Problem

The Coolant System (identified at the right of Figure 6) is used to provide coolant water to a Condenser so thet it
can be used to transfer heat from the vapor in the Condenser (see Figure 8). Suppose the coolant water has been
completely cut off. A diagnostic system has concluded that a mafunction of the function provide.coolant of the
Coolant System explains the symptoms of NOT (present product external.container) and NOT (temperature

rxvessd at.threshold). Specifically, the Hypothes SObject isprovide.coolant of Coolant System and the
observations to be explained are { NOT (present product externa.container), NOT (temperature rxvessdl

at.threshold) }. The system produces three casuad stories.

Causal Sory 1: Generation of Causal Connections

The causa process SupplyReactants uses the functions retrieveliquid and LiquidConcCitrl, in addition to the
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LiquidFeedSystem and AirFeedSystem. The explanation system generates the following:

The synmptom NOT (present product external.container)

i s explained by the follow ng chain:

NOT provi de. cool ant causes mal function in condense causing mal function in
retrieveliquid causing mal function in LiquidConcCirl causing problenms in behavior
Suppl yReactants which is used in behavior oxidation and indicates mal function of the

top level function and results in

NOT (present product external.container)

Theidea hereisthat if the required amount of reactantsis not available, the product is not produced as desired
and thus can not be retrieved. The explanation system generates this chain by using the following information:
Provide.coolant caused amdfunction in condense because it caused afailure in condense's behavior. A
mafunctionin condense caused amdfunction in retrieveliquid because its achievement was required to attain
the desired CPD for retrieveliquid. Retrieveliquid caused amdfunction in LiquidConcCtrl because it was
needed to provide the preconditions for LiquidConcCtrl and it preceded the use of LiquidConcCitrl inthe
behavior SupplyReactants. SupplyReactants was used in the causal process Oxidation, (see Figure 7), to achieve
the state (present reactants rxvessdl). This state was necessary for the completion of the CPD and thus
non-achievement here denotes non-achievement of further states in the CPD, particularly NOT (present product
externd.container).

Causal Story 2: The Use of Sde Effect Inspection

The explanation system continues and finds a causa connection for the second symptom, NOT (temperature
rxvessd at.threshold).

The synptom NOT (tenperature rxvessel at.threshold)
is explained by the follow ng chain:

NOT provi de. cool ant causes nmal function in condense

causi ng problens in behavior renoveheat of function cool

Since cool isnot atop leve function of the chemica processing plant, the trace continues until al consequences
are determined.

The synptom NOT (tenperature rxvessel at.threshold)
is explained by the follow ng chain:
NOT provi de. cool ant causes mal function in condense
causi ng mal function in cool causing problens in behavior
conmpensat e. oxi dati on. se, a notable side effect behavior used in oxidation

and i ndi cat es

NOT (tenperature rxvessel at.threshold)

Notice thet this explanation identifies that the symptom was observed in aside effect behavior (compensation for
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effects of the reaction) rather than a behavior of the main functiondity (production of acid).
Causal Sory 3: Using Subfunction Connections for Causal Focus

A find gtatement is made when the system has ingpected al pertinent causd chains. Thefind causd pathis
achieved via causd connections obtained specificdly through the knowledge of subfunctions. In its specification,
thefunction extraction has aPr ovi ded clause which specifies that the solid acid durry must have the proper
congstency o that flow through the extraction tubeis possible. The function SolidConcCitrl is present in this
device for the sole purpose of producing these conditions for extraction.

The purpose of SolidConcCitrl isto keep the solid suspended and the concentration in the reaction vessd at the
proper consstency. In the CondensateéWithdrawa System, the retrieveliquid function uses the Condenser to
retrieve the condensate from the vapor produced. The MixturelLevel Ctrl function then uses a feedback
controller to maintain the flow and thus the desired amount of liquid in the reaction vesse --- which ensures that
the acid durry hasthe proper consstency. If the liquid is not retrievable, then obvioudy the condensate flow
cannot be controlled and consstency of the acid in the vessdl is not maintained. The explanation system provides
this explanatory story asfollows:

One function affected by provide.coolant is SolidConcCtrl which is a
necessary subfunction of extraction. The synptom NOT (present product
external .container) is explained by the follow ng chain: NOT
provi de. cool ant causes mal function in condense causing mal function in
retrieveliquid causing mal function in M xtureLevel Ctrl causing nmal function
in SolidConcCtrl causing malfunction in extraction causing malfunction in
produce. aci d causi ng

NOT (present product external.container)
Discussion

Theintringc limitations of afunctiona representation for explanation arise from itsintringc limitations for
smulation. The representation uses prepackaged causa process descriptions which are organized around the
expected functions of adevice. Smulations of mafunctioning devices are thus limited to statements of what
expectations are "not" occurring.

This limitation effects the cgpabilities for explanation in two significant ways. Fird, the functiond representetion is
not capable of generating causd stories of mafunctions which interact unless the device representation has this
interaction explicitly represented. Smilar problems regarding the interactions of mafunctions arise in diagnosis
(Sticklen, et d, 1985) Secondly, "new" CPD's, i.e., CPD'swhich are not those intended for norma functioning
but which arise due to a change in device structure, could potentidly lead to symptoms which cannot be
explained using the functiona representation. Additiond research focusing on how afunctiona organization might
be used to determine these new behaviord sequences, in addition to how conventiona methods of quditative
reasoning may be integrated, is needed.

4.7.2. Parametric Smulation
Let us say we have a CPD associated with afunction:

sl->.8->..->sF
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where d istheinitid gate and s isthe functiond state desired. This CPD packages a smulation sequence. If dl
the conditions for o and the next trangtion are satisfied, the partid state corresponding to its successor will be
achieved and amilarly for the next trangtion and so on. The nodes in CPD and the conditions on the links may be
represented parametrically. In that case, the CPD becomes a parametrized family of behaviors. Specific
behaviors can then be derived for particular Situations represented by a particular set of parameters.

DelJongh (1991) uses the idea of parametric Smulation for reasoning about classes of functiond sysemsin the
domain of blood typing and testing. The members of the class follow the same causd process but they differ in
the various parameters associated with the values of the variagbles. For example how the function of preventing
spontaneous agglutination is achieved by the red cdllsis represented parametricdly. Smilarly the class of test
procedures is aso represented as a class of devices that uses specific causal processes to achieve the test
functions.

Sticklen and his group [Pegah, et d, 1993] have been mogt active in developing the techniques for the use of FR
for amulation. Each CPD is a prepackaged smulation sequence of sates of interest in some context, and in that
sense following a CPD is alimited form of smulation. However, the very fact that the CPD's are organized with
respect to goas of interest provides advantages in many smulation problems. In particular, when the FR
represents a class of devices (or aclass of contexts and initial conditions), then the CPD and the hierarchica
organization implicit in FR enable efficient Stuation-specific and god-directed smulation.

Suppose a device has anumber of functions, each with different Pr ovi ded dauses, i.e, the different functions
are invoked under different conditions. Note that a smilar situation might prevail with respect to the components
of the device, i.e., each of them might have different functions with different Pr ovi ded clauses. Let usaso
assume that the FR is represented parametrically, i.e, the partid states and the various conditionsin the CPD's
have parameters in them, corresponding to structural parameters that can be instantiated to correspond to
specific versgons of the device.

Sticklen describes an agorithm which, in outline, works as follows:

1. Given the operating conditions and the parameters, the smulator starts with top-level functions, and identifies
al the functionswhose pr ovi ded dauses are stisfied. Any missing functions or atered functions can dso be
used to initidize the smulation. If afunction uses another function as part of one of itslinks, the cdlling function is
included, but not the called function.

2. Using the specific parameters and the conditions, the top level CPD's of the functions that are chosenin 1
above are ingdantiated. Note that thisis not merely copying the CPD. Some of the paths in the CPD may not be
taken because the conditions for the links are not satisfied, ether because of the conditionsinthe Pr ovi ded
clauses of functionsthat are cdled or because the functions are otherwise not available. The ingtantiation of the
CPD for the specific Stuation isa Particularized Sate Diagram (PSD).

3. Any link in the CPD with a By-CPD or a By-Function annotation can be expanded by accessng the
referenced CPD or the CPD of the referenced function, and ingtantiating it by using the values of the parameters
and diminating inapplicable paths. This now produces a PSD at another level of detail. This can be continued to
as much detall as necessary. As PSD's are built, the values of the state variables are gppropriately updated.

Thusthe amulation itsdf is available in ahierarchicd fashion to many levels of detall, mirroring the functiond

decomposition of the device. Pegah, et d (1993) describe the smulation of the fud transport system of an F18
arcraft using this technique. Sticklen, Kamel and Bond (1991) dso describe integrating quditative and
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quantitative Smulations in an FR framework. Basicdly, the trangtionsin the CPD help the Smulation system focus
on which specific quantitative equations are to be used in the actual computation. See also Sun ad Sticklen
(1990).

Toth (1993) has recently shown how to use FR as an organizing principle for intelligent smulation where the
computationa effort in Smulation can be dlocated in response to the gods. For example, in astructurd
engineering problem, we might be interested in knowing if the stressin some dement is going to be more than
maximum alowed. Engineers reasoning about such problems typicaly combine quantitetive and qudlitative
techniques. By using purdly qudlitative techniques, they might rule out many parts of the Sructure, but zeroinon a
member with ahigh likelihood of excessve stress. They might then use numerica techniques for a precise
computation of sressin restricted parts of the original structure. Toth shows how the CPD of devices can be
organized to include pointers to both quditative and quantitetive methods for computing the state variables
involved in the causd trangtions.

4.7.3. Diagnostic reasoning

Davis (1984), Fink and Lusth (1987) and Steels (1989) are among a number of authors who have used
functiona notions explicitly in diagnostic reasoning, but work in this vein does not include the relaionship between
functions and causal processes that our work FR elaborates. In the use of FR in diagnosis, the causa process

description plays an important role.

4.7.3.1. Smple Use of FR for Diagnosis

The firgt use to which FR was put was in diagnogtic reasoning. In Sembugamoorthy and Chandrasekaran (1986)
adiagnostic knowledge structure was compiled for an eectronic buzzer from its FR. The diagnostic knowledge
sructure was a mafunction tree, with a set of diagnostic rules for each of the mafunctions. Sticklen (1987) used
admilar idea, but his problem was one where the diagnostic knowledge structure was incomplete. He used FR to
generate the diagnostic knowledge that was needed for a diagnostic Situation. The distinction between the use of
FR for generating the complete diagnostic knowledge structure in advance and generating only the fragments of
diagnostic knowledge as needed for a problem instance could be described as the digtinction between
compilation and interpretation, but this distinction is not my focus here. The variousissuesin using FR for
diagnosis are explored in Chandrasekaran, et d (1989), Sticklen and Chandrasekaran (1989), Sticklen, et d
(1989), Sticklen and Tufankji (1992) and Sticklen, et a (1993). The centra ideain the gpplication of FR for
diagnosis can be summarized as follows.

For amplicity, let usfirst congder a CPD in which each trangtion has only one annotation. Consder atrangtion
inaCPD of theform

By-function F-of - conponent C

Suppose the device isin the partid statenl, i.e, the deviceisin a date that satisfies the predicates corresponding
to nl. Suppose we test the device and observe that the device failsto reach n2. What conclusions can we draw?
Because the CPD asserts that the device goes from partid state nl to n2 because of the function F of component
¢, we can hypothesize that the failure to reach n2 is due to the component ¢ not ddlivering the function F.
Corresponding to this trangtion we can identify a possible malfunction state "Component C not delivering function
F." The diagnodtic rule "device satisfiesnl but not n2," can be used to establish this mafunction mode of the
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device. If the annotation had instead been "By - cPD CPD-1," where CPD-1 is a specific CPD, we could smilarly
examine CPD-1 to see why thistrangtion falled (some trangtion in CPD-1 should fall if the trangtion from nl to
n2 faled). Ultimatdy, we can identify some function of some component that would have to be responsible for
the failure of the device to reach n2.

There is no mafunction corresponding to a trangtion with the annotation By - Donai n- Law, adomain law cannot
fall to hold. Of course, the designer's account of the role played by the domain-law could be incorrect, but we
are assuming here that the FR itself is correct. How to verify the FR itsdlf isan interesting issue in its own right,
but is not the subject of current discussion.

The technique of identifying a component mafunction either directly from the annotation By - Funct i on or by
recursve gpplication of By- CPD leads to adiagnogtic tree that will have as tip nodes malfunctions of components
or subcomponents. The diagnodtic rule for each mafunction will be composed of rules of the form "If the
predicates corresponding to node ni are true, but those corresponding to nj are not true, then..”

What happens when we have more than one annotation, e.g., asin Figure 5 where the trangtion gppedsto more
than one function? In this example, the trangtion can fail because pipe2 is blocked, its thermd (heat exchange)
function falls, or because the conditions in the qudifiers are not satisfied. In this case, the falure of the trangtion
can only identify these as possible mafunctions, but cannot establish them. Additiond information will be

necessay.

Not al diagnostic knowledge can be derived from design information aone. For example, rank-ordering
diagnostic hypotheses in terms of likelihood and pursuing them in the order of most probable to least probable is
quite common in diagnogtic reasoning. But this ordering requires knowledge of probatilities of failure for
components. Thisinformation is not derivable from a causd modd of how a device works. Additiona information
in the form of failure ratesis needed. Conversdly, not dl diagnostic knowledge derived from causd modelsis
directly usable, since some variables mentioned in the diagnodtic rules generated from causad models may not be
directly observable. Additiond inference may be required. For example, in medicd diagnoss, from an FR of liver
functions, one might derive adiagnogtic rule, "If bile is generated in the liver but is not deivered to the duodenum,
then establish 'blockage of bile duct'." However, "bile in the duodenum” is not directly observable. Additiona
reasoning about the consequences of bile in the duodenum, perhaps by using FR's of other physiologica
mechanisms, can result in observable tests which can then be used as diagnostic knowledge.

DeJongh (1991) discusses the use of FR-like smulations of physiologicad mechanisms (like the
"Prevent-agglutination” function of red blood cells) to verify abductive hypothesesin a blood typing system. His
work is ggnificant in that both compiled diagnotic problem solving aswell as causd smulation using FR is done
in auniform formalism of problem spacesin the Soar (Laird, et d., 1987) framework. This enables him to use
Soar's chunking mechanism to transfer the results of causa Smulation to the compiled diagnostic knowledge
structure.

Debugging proposed designs involves aform of diagnoss. See (Stroulia, et d, 1992) for adiscussion of the use
of FRin thistask.

4.7.3.2. Debugoing Computer Programs

Allemang (Allemang, 1990; Allemang and Chandrasekaran, 1991; Allemang, 1991) consdered the problem of
understanding how computer programs work. Computer programs have components (modules at higher levels,
and programming language statements a the lowest level) just as physical devices do. We understand the
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functioning of a program by building a process description. Because one of the basic principles behind FR is that
how a component achievesits functionsis irrdevant to understanding its role in adevice, and the component may
be replaced by another that provides the same functiondity, an FR actudly does not represent asingle device,

but a class of devicesthat share the same functiona breskdown. Allemang proposed that an FR in the
programming domain would correspond to severa programs, dl sharing the same strategy. The proofs of
correctness of these programs would share many features in common as well. In that sense FR can be viewed as
an organization of the proofs of correctness of this class of programs. The partid datesin the CPD of an FR
correpond to intermediate formulas that appear in dl the proofs. Typica examples of these states of computation
include assertions about vaues of variables and loop invariants.

In this section, | will use some examples from Allemang (1990) and Allemang and Chandrasekaran (1991) to
illugtrate FR of programs. See dso Liver (1993) for application of FR to programs in the domain of
telecommunications.

4.7.3.2.1. An Example of a Functiona Representation for a Program

Consder the problem of moving the contents of each eement of an array between indicesk and n - 1 to the next
higher pogtion, that is, i [k, n- 1], di + 1] = #di] (#adenotesthe origina values of the array d). At the end of
the program, g n] hasthe vauethat usedtobeat gn - 1].

Three possible solutions to this are shown in Figure 9. The first solution iterates backwards over the relevant
fragment of the array, moving the eement with the highest index (n - 1) into place fird, leaving room for the next
to last dement, and so on. The second solution attempts to move the dement with the least index (K) first, but is
buggy, since this clobbers the contents of the next array location. The find exampleis a corrected verson of the
second case, in which some auxiliary variables have been introduced to take care of the value clobbering
problem.

t:==Fk
, . temnp 1= a|k|
vi=m ] L=k while § < n —1 do
while ¢ > k do while : < n —1 do save := ai + 1]
als + 1] := afs] als + 1] := als] ali + 1] := temp
ti=¢—1 t:=%41 temp = save
end end . .
t:=¢t41
end

Figure 9. Three solutions to the shift problem, including one incorrect solution (center)

We have some knowledge about alarge range of solutions to this assgnment, including the three solutions given
above. We know that the solutions must treet datain a conservative way, thet is, data must not be overwritten.
These solutions must move the data within one data structure, rather than congtruct a new one. They will iterate
through the set, treating each eement individually. How can we take advantage of such knowledge to help to
recognize the correctness of the actua code? We begin by representing them with the same FR.

All three of these programs cover the set of relevant indices of the array with theindex i ; for each dement
covered by i they move the current element up one place in the array. These two operations are coordinated by
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the overall ructure of the loop. Notice that the programs differ in the choices they make for each of these
functions, the first program counts down the set while the others count up; the first two smply move the vdueto
the appropriate place in the array, while the third uses amore complex swapping solution. This suggests three
devicesin the functiond representation; the index, the mover, and the loop.

Therole of theindex in this problem isto cover the part of the array that is of interest. It doesthisby 1) starting
somewhere in the s&t, 2) moving from one item in the sat to another, and 3) checking when it has covered the
entire s=t. This suggests three functions for the index variable. These, dong with some samples of code that could
support these functions, are shown in Figure 10. Two options for the index are specified; one each for moving up
and down the set. We will use the notation U(i) to refer to the part of [k...n - 1] visited so far by the index; for
ascending index, U(i) = [K...i - 1], for descending index, U(i) =[i + 1....n - 1] (by convention, U(i) never contains

i).
Device indez
Function starf
T
ToMake Tindez = o
By e.g., Tndeg:=n—1
Tindes (= &k
Function nect
I Yindex ="z
ToMake Tindez = v(7xz)
By e.g., Tindeg :=Tindex — 1
Tindes (=Tindex 4 1
Function check
I Yindez € [k.n — 1]
ToMake {Tindez c 7}
By e.g., Tindex > k
Yindex <n—1
Figure 10.

Therole of the mover in this program isto guarantee that if the previoudy visted cdlsin the array have been
moved correctly, then dl the cdlls, including the current cdll, are moved correctly. It has one function to do this,
which in Figure 11 iscdled move. In the figure, refers to the predicate on subsets of [k...n - 1] that dl cdlsina
subset have been appropriately moved, while no others have been moved. For use in a correctness proof, is
defined by

(9 =jk..n-1\S &j] = #d]]
jsdj+1]=#i] (1)
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Device mover
Function moze
I T{U(%ndex)) A {Tindex € I7)
ToMake I'(I7{v(indez))) A [empty a7 indes|)
By e.g., g[7indez + 1] := a[Vindex|
Provided (empty a[findez|)

Figure 11.

Because of the possihility of a mismatch between some choices that might be made for theindex (e.g.,
ascending) and this definition for the mover, it is not possble to judtify the part of the proof corresponding to this
function, i.e,

{(U(Andex))} 7index+1] := gAndex] { (U( (Andex)))} (2)

before knowing the details of the actua program. Thus, in order for this FR to be consigtent, it would be
necessary to place (2) asthe proviso for function move. In Figure 11, awesker proviso is used which does not
entail the consstency of the FR, but shows the capability of the system to use plausible explanationsin place of
actud proofs.

Findly, the overal loop has the job of coordinating the functions of these two components. It is the loop that
sequences the various checks and assgnments from the mover and the index so that the overdl task of moving
the array fragment is done. A functiond representation for the loop is shown in Figure 12.

4.7.3.2.2. Debuqgging Using Device Undersanding

Allemang dso discussed the use of FR for program debugging. The debugger matches intentions to programs,
and then resorts to a weak theorem prover only when the match cannot be completed. It uses provisos to
amplify the job of the theorem prover as much as possible,

When presented with the first program in Figure 9, the debugger determines which choices of navigator and
collector match the actua program. We omit the details of this unification process. Since the structure of the FR
matches this program quite well, the loop invariant for thisinduction proof is dready known, and the only work
for the theorem prover isto verify that the proviso (empty gi]) is satisfied whenever theline gi + 1] == di] is
executed. So the debugger presents the following fragment of a proof:

Presuming that gn] is empty, theloop initidization tellsusthat i isn - 1. So, a the gart of the loop, di + 1] is
empty.

From the previous iteration, theline di + 1] := di] givesusthat i - 1 + 1] isempty. Thelinei :=i - 1 givesus
that gi + 1] isempty.

Thus, gi + 1] isempty for the current iteration.

We will skip what the debugger does with the second program, and move to the third one, in which the
programmer has introduced three nove lines and two new variables to the problem. The debugger has no
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problem recognizing this as a correct program. It finds three lines in the body of the loop where it expected to
find just the oneling,

di + 1] = 4.

Device shift bop
Function srduct
K Yy € [k.n—1],a]i] = le[j]
ToMake ¥j € [k.n— 1], a[f +1] = fla[]
By inifighze-and-loop
Behavior inifialize-and-loop:

T

Using Function start
of indez

I'[U{?;nﬂeﬂ:))

Using Function cover

of shiff loop

I'{U{?indem}}h?;ndm & [k..m—1]

Function cover
H I'({UV(Yndez))ATindes =c 7
ToMake T'(I7{ Vindez ) )ATindes & 7
By cycle

Behavior cycie

I{U(ndez))
Using Function nezt Using Function check
of indez of indez
T(IF (vl Tindez))) - {Yindez € I7)
Using Function move
af mover

Figure12.

Fird, it notices that the second of these three lines might be able to provide the function expected by the missing
line, provided that the variable temp contains the vaue that was expected on the right hand side of the
assgnment, that is, #di]. This proviso is treated as any other, and the debugger traces back through the loop to
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generate the following proof:

Thelinetemp = gKk] gives usthat temp contains #dk].

Theloop initidization tellsusthat i isk , so a the start of the loop, temp contains gi].
From the previous iteration,

thelinesave := di + 1] gives usthat save contains#gi + 1]

the line temp := save gives usthat temp contains#gi + 1]

thelinei :=i + 1 gives us that temp contains #g{i].

Thus, temp contains #i] for the current iteration.

The separation of functions from the process description dlows FR to act like a plan representation for programs
(Johnson, 1986); the functions specify pre- and post- conditions. The linksin CPD index other functions, based
on their pre- and pogt- conditions, just as subgoals index other plans. Allemang goes on to argue how FR dlows
for away of combining the power of the plan-based representation and the traditiona programming language
semantics to define what he cdls afunctional semantics, which alows a debugger to consult a proof of
correctness without having to ded with dl the complexities of the traditiona programming language semantics.

4.7.4. Device Libraries

The FR framework |eads to the prospect of technica domain libraries of generic devices. Device classes a
different levels of system description would be represented along with parametrized structura representation and
the corresponding CPD's. Specific device representations can be constructed by choosing, ingtantiating and
composing eements from the library. In most cases, the FR for a device would smply be an ingtantiation of an
abgtract generic device, but in cases where the design is novel, new CPD's can be composed. This device can be
abstracted to a generic device and be made available for future use.

DelJongh (1991) represents classes of devices by parametrized FR descriptions, and specific devices inherit the
causal structure but the variables assume the specific values for the particular device. Pegah, et a (1993) report
on the use of device libraries for congtructing representations. Toth (1993) outlines the congtruction of such
libraries in an object-oriented framework, and uses such libraries extensvely in her work on smulation.
Josephson (1992) reports on the use of abstract data types as the basis for building such device libraries. The
Kritik system of Goel (1992b) uses alibrary of about 25 designs for case-based design.

4.7.5. Usesin Design

There are anumber of design subtasks for which the FR framework is useful (see Chandrasekaran, 1990, for a
description of the task structure of design, God and Chandrasekaran, 1992 for amore detailed task analyss of
case-based design, and Freeman and Newell, 1971, for an early discussion of the role of functiond reasoning in
design). lwasaki, et d (1993) describe a design framework in which again FR plays an important role.
Chandrasekaran, Goel and lwasaki (1993) discuss the use of FR for representing causal aspects of a design
rationale, i.e.,, explanations of the design choices. Levi, et d (1993) discuss how FR helpsin bridging planning,
execution and device implementation in planning systems. In this section, we discuss the use of FR in case-based
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design and in design verification.

4.75.1. Redesign

The need to redesign can come about in a number of ways. For one thing, it is a subtask of the technique of
case-based design. In this technique, when a new design problem comes dong, a search is made in memory of
problems amilar to the current one, the "closest” one is retrieved and the design solution for that problem is
redesigned, i.e., modified to fit the current needs. Redesign can aso occur when the use environment has changed
and it is desred to modify a device so asto ddliver dightly different functions. In ether case, the god in the task
of redesign isto modify the artifact so thet it meets somewhat different functions. If the required changesin
function are dradtic, then perhaps equadly drastic structurd dterations will be needed, possibly requiring another
design from scratch. However, if the needed changes are small, redesign can be accomplished by relatively
smple modifications to the exigting structure, perhaps by parametric changes to the components and substances.
In this section, we examine the role of FR in the redesign problem, assuming that the required changes are
parametric changes to the components.

Redesign has three subtasks: identifying the substructure that requires modification, identifying the modifications
that need to be made, and verifying that the changes in fact produce the desired changesin function. Taking the
last two subtasks first, deciding on the gppropriate modifications requires knowledge outside of the FR for the
device. Perhgps, adesign library containing FR's of a number of functiona assemblies could hdlp. If it is decided
that a component or a subsystem of the previous design needs to be changed to reflect a different functionaity, an
gppropriate solution from the library may be available. Regarding verification, Sticklen's use of FR for parametric
smulation (Pegah, et d, 1993) isrdevant. Aswe discussed in the earlier section on parametric Smulation, he
shows how FR can be viewed as aform of compiled amulation, and suggests ways in which FR can incorporate
information about the behavior of the device over ranges of component parameters. With thisinformation, it is
sraightforward to derive device behavior when component parameters are changed.

Let me now get back to the first subtask, viz., identifying the substructures or components that need modification.
Use of FR for retrieval and case analysis wasfirgt discussed in Goel and Chandrasekaran (1989), and Goel
developed theideain detail in histhesis (Goel, 1989; see dso Godl, 1992) where he described Kritik, a system
that performs aform of case-based design in the NAC domain. | will describe how Kritik uses FR for case
retrievd and analyss. Suppose we want to modify NAC to coal high-acidity sulphuric acid insteed of the
low-acidity nitric acid. Kritik first compares the desired functions and those actudly delivered by the candidate
design (NAC). It notes that they differ in (i) the substance to be cooled (sulfuric acid instead of nitric acid), and
(i) aproperty of the substance (high-acidity instead of low-acidity). Since the substance property difference
occursin the function cool (low-acidity) nitric acid, Kritik uses this function to access the CPD responsible for
it. A fragment of this CPD, the trangtion from gtate? to sate3, is shown in Figure 5. Kritik traces through this
CPD, checking each gtate trangition in it to determine whether the god of reducing the substance property
difference (low-acidity high-acidity) can be achieved by modifying some eement in the trangtion. For example,
inthetrangtion state2 state3 it finds that pipe2 has an allow function but it is restricted to low-acidity
substances.

Kritik has a typology of modifications to device components:. (i) the parameters of a component can be tweaked,
(i) the moddlity of operation of a component can be changed, and (iii) a component can be replaced by another
one. It correspondingly generates the following modification hypotheses. (i) pipe2 can dlow the flow of
high-acidity substances in a different parameter setting; (ii) pipe2 can dlow the flow of high-acidity substancesin
adifferent mode of operation; and (iii) pipe2 has to be replaced with some new-pipe2 which can dlow the flow
of high-acidity substances. How the choice of modification is made is not directly related to the design rationale,
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S0 we omit adiscussion of that issue. The replacement of nitric acid with sulphuric acid is straightforward asis the
smilar modification needed to handle the difference in the functiond specification. See God (19914) for
additiond discussion of case adaptation.

While Kritik islimited to “locd' changes in a design, new membersin the Kritik family of systems go beyond this.
Strouliaand God (1992), for example, show how FR-like representations of generic mechanisms such as
cascading can help make certain kinds of non-local modifications to adesign. Suppose, for example, a desgner
wanted to cregte a device that will be able to cool Nitric Acid by a much larger range than the device illugtrated in
Figure 2. Suppose dso that in addition to the design shown in Figure 2, the designer knows of the generic
mechanism of cascading - the replication of adevice structure to achieve alarger function. Stroulia and Goel
show the cascading mechanism can be represented in the FR language and used to replicate the water pump in
Figure 2 to cool Nitric Acid by alarger range.

Note that the cascading mechanism is not only device-independent but aso domain-independent. Bhatta and
God (1993) have studied how the cascading can be learned from the design of one type of device such asa
Nitric Acid Cooler, and used to design another type of device, such as an dectricd circuit. In their work, the FR
of the first device, the Nitric Acid Cooler, guides both the learning of generic mechanisms such as cascading, and
the trandfer of this knowledge across devices and domains.

4.75.2. Desgn Verification

Lets us consider adesigner who has just completed adesign, i.e., she has put together a description which
specifies what components to use and how they are to be connected. Unless the design was done by avery
smple process such as table look-up, the designer is likely to have her own explanation of why she thinks the
design would work. In our framework, having such an explanation would correspond to her having acausa story
of how the device as designed will meet the functions.

The intended behavior of the device as described in the CPD can be verified by smulating the device behavior
based on component descriptions. As we discussed earlier, there are two problems in using component
behaviord specifications for device smulation. Fird, thereisapossible gap in levels of abstractions between
device-levd behaviors we are interested in verifying, and the component-level behaviord descriptions. For
example, the language in which the behavior of trangstors and resstors is described is thet of currents and
voltages, but a circuit as awhole might be described functiondly as an oscillator or as an adder. We could add a
number of abgtraction rules, but the smulation needs guidance on which abstraction rules to gpply and when.
Second, the component models may describe aspects of behavior that may not be relevant for the device-leve
behaviors of interest. Without guidance from the device-leve functiond description, the smulation may become
quite complex and unwieldy, generating behaviors that do not contribute to design verification. For example, a
pipe as acomponent may have two sets of behaviora descriptions, the firgt involving its capability to support
flow and the second regarding its thermd properties. If the device function is only concerned with flow, we would
want to use this information to avoid pursuing behavior composition of therma properties.

The CPD can be used as follows in the design verification task (Iwasaki and Chandrasekaran, 1992). The
predicates that gppear in the definition of the nodes in the CPD and the functiond predicate, say PF, are terms
that are of interest a the device-level. We first need to define these predicates in terms of objects and predicates
that appear in the definition of components. For example, suppose the predicate Anpl i fi cat i on- Level
appearsin the description of anodein a CPD, and that the component behaviors are in terms of voltages and
currents. We first define the predicate in terms of voltages at the input and output of the relevant components.
Once a correspondence has been established between device- and component-level terms, we need to establish
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that the partid states corresponding to the CPD nodes occur in the device, and that the transition occurs for the
reasons mentioned in the annotation. If the annotation said, "By - Funct i on Fof conponent €', we want to
verify that the component did play the indicated causal role in the trangtion.

We thus have the designer's CPD and the structural description. We can generate a description of device
behavior from a description of component behaviors using asmulator that composes the behaviors of the
components in the structurd description. A number of component description and smulation systems have been
described in the Al literature, e.g., Fikes, et a, (1991) and Low and Iwasaki (1993). However, as mentioned
earlier, thisbehaviora description will be in component terms. We can then verify that the CPD is supported by
this smulated behaviord description, i.e., the predicates mentioned in the CPD occur in the behavior and in the
gppropriate causa and tempora relationship.

One can imagine usng the smulator in two modes. In one, the smulaor isrun first and the entire set of Sate
variable valuesfor dl relevant discrete ingtants of time,

S{x1,...x,.xN), t =1, 2,.., .T,

where S isthe Sate vector a timet and x| isthe j-th State variable, is generated. (The state vector is Smply the
st of dl the state variables that describe dl the componentsin the device.) This description isatrajectory of the
behavior of the device. Once thissmulation is available, then we can proceed to establish that the CPD is
satisfied by the smulation.

A second mode is one where the smulation itsdlf is guided by the CPD. That is, wefirg verify theinitid
conditions of an FR are satidfied by theinitid vaues of the state vector. The firg trandtion of the CPD isthen
used to drive the smulator in relevant directions, i.e., to compute the values of the rdlevant sate variables needed
to establish the next node in the CPD and the trangition. Once these are verified, the smulation can be guided by
what is needed for establishing the next node in the CPD and so on. In order for performing this form of guided
smulation, we need to have component-level smulation techniques that can be used in sdlected directions.
Development of these techniquesis an area of needed research.

The work reported in Iwasaki and Chandrasekaran (1992) uses component smulation in the first mode to verify
the CPD. Let us say that the trgectory of behavior has been generated by the smulator, and that we are looking
a atrangtion from node ni to node nj in the CPD. Verifying that the two nodes are satisfied by the trgectory
involves showing thet there areingants k and |, k |, such that ni istruein sate Sk and nj istruein Sate S.
Proving thiswill make use of the predicates used in the definition of the nodes in the CPD and the abstractions
defined between the variables used in these predicates and the component-level variables in the trgectory.

Even if we have verified that the device (in Smulation) has gone from node nl to n2, we can't yet claim that the
trangtion in the CPD has been verified. The reason is that we still need to show that this trangtion occurred as a
result of, or was caused by, the reason mentioned in the annotation. For example, say that the annotation is

"By- Function F of the component C." If component ¢ had no roleto play in the trangtion, thenit is possible
that the component ¢ was not needed, and in any case the designer's account of why the device worked would
be incorrect.

How to decide if an event causes another is a contentious philosophical issue, but the following wesk criterion is
aufficient for most purposes: pi causes pj if pi had anything to do with eventualy bringing about pj, where pi and
pj are predicatesin nodesni andnj, j > i. In lwasaki and Chandrasekaran (1992) techniques of causal ordering
-- originally presented in Iwasaki and Simon (1986) -- are used to show thiskind of relationship between pi and
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pj . Showing that the function of a component cauises some aspect of a state to be true requires careful use of the
semantics of the type of function.

A dightly different kind of design verification task occurs in the context of incremental modification of a design.
Suppose that a designer designs a new device for achieving a desired function F2 by tweaking the design of a
known device which delivers afunction F1 very smilar to F2. The designer may now want to verify whether the
proposed design for the new device will result in desired functiondity F2. Note that the designer dready knows
that the old design resultsin F1. If the designer has access to the FR of the old design, then he may modify the
FR to reflect the design twesk, and then smulate the revised FR by forward tracing to determine whether the
proposed design will deliver the desired function F2. Kritik (God, 1989), which designs new devicesin this
manner, uses this method for verifying whether the proposed design twesks help in achieving adesred function.

4.7.6. Representing Problem Solvers as Devices

| earlier described Allemang's work in representing computer programs in the FR framework and using it to
reason about errors. An Al problem solving program is of course a specific type of computer program, and thus
has a device-like representation. Weintraub (1991), Johnson (1993) and Stroulia and Godl (1993) have built
systems which use the FR of the problem solvers as abasis for critiquing the problem solving behavior.
Weintraub's system uses this critiquing for credit assgnment (actudly blame assgnment) in learning. Johnson uses
it asthe bads for sudent monitoring in atutoria system for problem solving. Strouliaand God useit for

s f-monitoring, credit assgnment, and self-adaptation in the context of aplanning system. In dl casesthe FR is
used as an abstract representation of the strategy of the problem solver, i.e,, the god-subgoa structure of the
problem solving method. Because the problem solversinvolved in dl these cases use gods and subgods explicitly
during problem solving, the organization of the problem solver has the same function-subfunction decomposition
smilar to devices. In Weintraub's work, the transitions of the CPD represent the execution of the method's
subtasks. Associated with each trangition isa set of error candidate rules. If the problem solving system that is
being critiqued fails to make atrandtion or makesit with erroneous parameters, the credit assgnment system uses
these rules to make hypotheses about the sources of error in the problem solver. The FR thus provides an
abstract road map about the strategy for the critic. Johnson uses the FR of the problem solver in asimilar way for
monitoring a student's problem solving behavior. Strouliaand God use the FR for salf-monitoring by aplanning
system, for generating hypotheses about the causes of error when the planner ether failsto produce a plan or the
plan fals upon execution, and for modifying the planner using generic repair plans.

There are some interesting differences between the FR's used by Weintraub, Johnson, and Strouliaand God in
representing problem solvers. Weintraub uses CPD's in FR in the way we have used them for devices and
programs o far: the method is a date trangtion diagram where the nodes are partiad states at the appropriate
level of description. On the other hand, Johnson wants to modd problem solving methods whose behaviors are
not completely specified in detail beforehand. Her problem solver is built in the Soar framework (Laird, Newell
and Rosenbloom, 1987). In this framework a method is specified abstractly as a set of subgods and some type
of "search-control" knowledge, and out of thisinformation an actud search drategy emerges a runtimein
response to the specifics of the problem stuation. This kind of flexibility is not normaly part of ordinary devices
and programs, and hence their FR's have their CPD's completely specified in advance. On the other hand, the
god of the Soar framework is to build flexible problem solvers, i.e.,, problem solvers which are not committed to
afixed procedure to achieve agod. Only to ahigh levd drategy is goecified and the detailed behavior is
determined at run-time. Johnson represents CPD's just by their subgoas and some general knowledge about the
condraints on sequencing them. The following exampleillugtrates this

Functi on:To- achi eve B Method B1:
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I f: Desred R-B Godls F, G

By: Method B1 or Method B2 Control: F precedes G

Method B2

Gods H, 1,J

Control: No prior congtraints

Figure 13. Gods, multiple methods and method selection information

The specification in the figure says that God B can be achieved by ether of the methods B1 or B2. Method B1
has two subgods to be achieved in that order, while method B2's subgoas can be achieved in any order
depending upon the circumstances. In the case of B2, this abstract representation actualy correspondsto 6
distinct sequences and hence is a more compact representation.

Stroulia and Goel's Autognostic system (Strouliaand Godl 1993), uses FR to describe the reasoning process of a
robot planner. Autognostic uses the FR modd to monitor the planner's problem solving in amanner amilar to
Johnson's. If the planner fals to produce a plan or if the plan produced by it fails upon execution, then, likein
Weintraub's work, Autognostic uses the FR modd of the planner for assigning blame and generating hypotheses
about the causes of failure. The process of blame assgnment however is different. In Weintraub's work, the
trandtionsin the CPD are annotated by associative rules which indicate the likely sources of error. In contrast,
Autognostic uses the derivationd trace of problem solving in conjunction with the FR model to identify the
sources of error. A mgjor aspect of thiswork is the redesign of the robot planner after the causes of falure have
been identified. The FR mode provides the vocabulary for indexing repair plans that correspond to different
types of fallure causes. In addition, the semantics of the FR modd enable amodification of the planner in a
manner that maintains the congstency of problem solving.

4.7.7. Representation of Scientific Theories
Darden (Darden, 1990; 1991, 1992, Moberg and Josephson, 1990) has used FR to represent scientific theories
and to capture some aspects of theory changein science. FR isanatura medium for representation of theories,

especidly in domains such as biology and geology where the objects of study are causa processes. Debugging a
theory is akin to debugging a mechaniam.
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Figure 13
4.8. Generating FR'sfor New Devices

Indl of our discusson so far, we have assumed that the designer or someone el se has congtructed an FR for the
device that is being reasoned about. For diagnosis and smulation, the FR is assumed to be given, and the
reasoning mechanisms produce diagnostic knowledge or a smulation of the device. For design verification, the
component level smulation mechanism produces asmulation of dl the date variables at the component leve, but
the FR as proposed by the designer is matched with the smulation to seeif the CPD in FR is supported by the
generated behavior. Human experts, however, are often able to congtruct functiona representations of devices
that they have not seen before in the domains in which they have expertise. For example, if acircuit is shown to
an eectronic gecidig, she might, after some hypothesis making and verification, identify the circuit as, say, an
amplifier and proceed to explain what components play what role and how she thinks it works as an amplifier.

| remarked earlier that, given aStructure, i.e., aset of components connected in some way, the FR of the device
asawholeis determined partly by consderations that are outside the device itsdf. The leves of abstractions of
device leve varigbles, i.e., the terms of description, are determined both by the problem solving goas and by
what can be supported by the component-level descriptions. Given acircuit with two resstorsin paradld, a
possible device-level hypothesisisthat one of the resstances is providing a current shunt, and an FR that focuses
on that aspect can be congtructed. Two loadsin pardld is another possibility, and an FR that reflectsit isaso
possible. If the god isto congruct an FR as intended by the designer, some form of "best explanation” reasoning
may be necessary in generd. That is, aform of abductive reasoning in which, usng a number of cues, a
hypothesis is made about the intended function of the device and a corresponding FR is constructed.

One gpproach to congructing an FR for adeviceisto adapt the FR of asimilar device, if such information is
avalablein memory. The Kritik system of Godl (1991b) explores this method. Prabhakar and God (1992)
investigate how the process of adapting the FR of a known device to obtain the FR of anew device can be
facilitated by FR-like representations of generic physical processes and mechanisms.

For the more generd version of the problem of congtructing FR's for novel devices, Thadani and Chandrasekaran
(1993) propose a st of techniques, and Thadani (1993) has built a system that does thisin the domain of passive
electricd circuits. A centra ideaisthat expertise in domains partly congsts of structure-function-CPD
templates at various levels of description. These templates consist of structural skeletons, functions that they can
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help achieve, and an abstract CPD that describes how the structura skeleton might achieve that function. Phrases
such as "skeleton,” "template’ and "abstract” in the above are intended to refer to the fact that the templates and
the CPD's may refer to classes of objects and behaviors, and aso may not have dl the detailsfilled in. They are
smply organized fragments of knowledge about the domain, fragments embodying pieces of understanding about
sructurd configurations and their rdations to various functions.

Asanew physca sStuation is presented, the reasoning proceeds as follows. Templates from memory are
matched to the description. All templates that match parts or the whole of the device are retrieved and ranked
according to the degree of match. The templates that have the highest degree of match are considered first. The
templates are ingtantiated with as much detailed information from the device as avallable. Ingantiated CPD's may
suggest additiona hypotheses about the possible roles of other structura parts. These hypotheses may be
partialy or completely verified by checking the conditions associated with the selected CPD's. The hypotheses
may aso be verified by smulating the CPD with indtantiated parameters, but the current implementation does not
use do any smulation. In this process, additiona hypotheses might be generated about To use an example, let us
say that the origina structura description of acircuit isin terms of resstors and voltage sources. Suppose that, as
areault of template matching and additional verification, portions are labeled as voltage dividers and current
shunts. The hypothesis about the shunt might be accepted or rejected based on the typica vaues of the resstors
in the shunt and whether the resstors in the device satisfy the typicd rdation. In another example, the CPD for a
hypothesized template might have a trangition based on some function of a component. We can now check to see
if thereis structurd evidence of the component. If thereis, that component structure is so labdled. If thereisno
evidence, the template is rejected as ingpplicable, dong with the corresponding hypothesis about the structurd
fragment. The surviving CPD's are used to generate hypotheses about the rest of the device.

If the predictions are confirmed, that part of the deviceis labeled with the function from the template. When the
cycle of the identifications and verifications is over, we may have asat of dternate hypotheses for parts of device.
Each conggtent set of interpretations gives rise to labeling the parts of the structure differently. The relabeling for a
specific interpretation changes the structurd description, raising the leve of abstraction in which the structureis
described. There will be such ardabding for each of the aternative sets of interpretations.

This relabding enables a new round of matchings to be activated, and a new st of structure-function templatesto
be retrieved. Because of the congtraints that come up with each such hypothesis, a number of earlier dternatives
would typicaly not survive, but perhaps other dternatives a this higher level might be constructed. In any case,
this process is repeated at each level. From the leve of resstors and transistors, configurations at the level of
voltage dividers and amplifiers may be hypothesized. At the next level of reasoning, the higher level sructurd
description might enable the reasoner to identify higher level functiona units, aided by templates in the knowledge
base that rdate sructures at thisleve to higher level functiond units. Each stage prunes away some of the
hypotheses from the previous levels, and might add a few hypotheses, but in generd, with a sufficient body of
domain knowledge in the form of templates and their congtraints, the number of possible interpretations
convergesto asmdl number of highly plausible and consstent ones.

The above picture of top-down recognition dternating with bottom-up hypothesis verification is one which | think
models our generd reasoning about the behavior of the physica world. In this view, we are armed with alarge
library of skeletd FR's which rdate behaviors, structural congraints and CPD's a various levels of abdtraction in
agiven domain. Our knowledge of theworld is, as| sad at the beginning of the paper, in the form of such causd
packages. Use of alarge repertoire of FR's, spanning multiple levels of abstraction and godls, gives the agent the
cgpability for very god-directed and efficient smulation of just the relevant parts of the world for predicting
behavior.
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4.9. Generalization to Non-Dynamic Causal Structures

Most of the devices that we have consdered so far in the paper are what one might call "dynamic” devices, i.e,
devices whose function is defined in terms of states and state trangitions of the device. The device has an initid
state and undergoes a causa process of state changes and reaches states in which the functiona specification is
satidfied.

The exception was our discussion of passive devices which achieve ther functions smply by virtue of their
sructure. We used the example of aflower arrangement serving the function of decoration. Here the notion of
causation involves the device's causd effect on human agents, the occupants of the room. As| discussed earlier,
presumably one could give acausa process account of how the flower arrangement actudly ends up creeting a
sense of beauty in the perceivers. However, for many such devices, we develop direct mappings from structure
to function without involving the causal processesin the user. In any case, the flower arrangement does not itself
undergo a causal process.

Another example of apassve function is the structurd frame which gives strength to a structure by digtributing the
loadsin its members. Suppose we want to explain how it is able to support a heavy load. Engineers often give a
causd account that goes something like:™ this member divides the load and transmits each hdlf to these two
members, and because of the thickness of the beam the stressis pretty small.” Thisisacausal account, and the
phenomenainvolved areintringc to the frame, unlike in the flower arrangement example. But the account is not a
description of adynamic causal process, i.e., the frameis not described as undergoing state changes over timein
order to explain its ability to support the load.

Neverthdess, the explanation by the engineer has the syntactic form of a CPD: something in the device causes
something else in the device until the function we are interested in (in this case, rlatively low vaue of the stress) is
shown to be caused, thus explaining the function. Each of the trangtions between causes and effectsin the
explanation can be further explained in the way we described for CPD's: by appeals to functions of substructures,
other such "CPD's," or domain laws. For representation and reasoning, the CPD's play the same role as they do
in the case of devices with dynamic gate trangitions. Toth (1993) in fact congtructs FR's and CPD's for
mechanica structures and uses them to smulate their properties.

There are examples which are not even causd in the way that the structurd frame exampleis, but ill a CPD-like
explanation of why it works can be given, and such explanations can be used for predictive problem solving.
When we understand the proof of a theorem, we create subproofs which prove various lemmas. We tak about
how the assumptions lead to certain conclusions which lead to other conclusons. In the process of explaining
how the conclusons lead to other conclusions, we may apped to lemmas, (which serve the role of functions of
components) or to inference rules of logic (domain laws) or to other proofs (other CPD's). Thusit appears that
the structure of FR and CPD's captures a generd logic of comprehension and explanation, with causal
explanaions being a specid case.

Both in the case of the Sructurd frame and in the case of the mathematicd proof, the explanation itsdf hasthe
sructure of a process: things are explained one after ancther, one causing ancther or one implying another,
though of course thereis no such sequentidity in the phenomena themselves. In the case of the structurd frame,
al of the stresses and drains are Smultaneoudy in baance, even though the causal account has an inevitably
sequentia character. In the case of the proof, dl the truths about a mathematical domain are eterndly true: one
conclusion doesn't cause another conclusion, et done in a sequentia way.

So where do the sequentidity of the explanations and their forma smilarity to causa processes come fromin
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these cases? The answer is that these are descriptions that are generated or used by cognitive agents with a highly
sequentia ddliberative architecture. When we reason about the world, we move from conclusion to concluson
(or hypothesisto hypothess). The knowledge state of the agent changes as the agent traverses through the
knowledge space in this manner. In the case of ared world phenomenon with an intrinsic causa process, thereis
often a mapping from the knowledge state of the agent to the causal state of interest. When a state changes into
another date in a device, the agent's knowledge state, as he traces this sate trangtion, changesin asmilar way.
This ability to make the sequence of knowledge State trangtions mirror the causal structure of the world isin fact
one of the mgor sources of the power of thinking in dedling with the world, as Craik pointed out in 1943 (Craik,
1967, isareprint, with a postscript, of the 1943 edition). The power of goal-directed explanation is not restricted
to dynamic causal phenomena, as the examples of the Sructurd frame and mathematical proofs indicate. What
the explanations capture is an organization of dependency relations in the domain of interest to arrive at
conclusions of interest. Causd state change relations are just one form of such dependency relations.

5. Rdlated Work

There has been quite a bit of work in Al and related areas in trying to understand the relation between function
and dructure of devices. Thefollowing is arepresentative but by no means exhaudtive selection of such articlesin
the bibliography: Bragjnik et a (1991), Chittaro, et a (1993), Gero et d (1992), Hunt and Price (1993), Jordan
(1991), Kaindl (1993), Lind (1990), Navinchandra and Sycara (1989), Mdin and Leifker (1991), Umeda, et a
(1990), and Welch and Dixon (1992). They dl build on the intuition that functions are made possible by
behaviors and the properties of components (in the structure of the device) make the behaviors happen. Our
work is characterized by an emphasis on the representation of causal processes that underlie the functioning of
the device. We dso emphasize the issues of levels of abdtraction, of integrating functiona and process description
into device-gpecific packages, and formal representation, and use in avariety of problem solving tasks, of
explanatory annotations.

Work like that of Jordan (1991) and Stadlbauer (1991) emphas zes the relationship between shape and function,
and issue that we have not been concerned with much in this paper, though of courseit is an important one. We
have dso earlier related our work to that of Hodges (1992) by pointing out that he is attempting to come up with
asat of mechanica function primitives. One can think of his work as a content theory of functionin a
shape-based mechanica design domain where shapes play arole in the transfer of force and motion. Abu Hanna
et d (1991) discuss how functional modd is not sufficient for diagnosis and additiond information is needed, a
point we aso made in our work on diagnogtic systems based on functiona modds (Sembugamoorthy and
Chandrasekaran, 1986). Hunt and Price also make points similar to Abu Hanna, et d, about the need in
diagnosis for knowledge beyond a purdly functiond leve. Their device representation uses ideas for the
representation of function and structure smilar to ours, but does not have the causal process description. They
make the point that the CPD of FR could describe a system's working incorrectly (after dl it isatheory of how
the device works by the designer or the diagnostician) and hence may lead to incorrect diagnos's, so they want to
use component descriptions for smulating device behavior. The problems that we have identified regarding levels
of abdtraction in the description could arise and additiond inferences from the component-level behaviora
descriptions might be needed. An approach based on integrating the FR representation for focusing diagnostic
problem solving, and component-level behavior smulation for deriving new behaviors that are not explicitly
mentioned in the CPD's can be profitable. In fact, the work that we describe on design verification shows how
the FR view and the component smulation view can be integrated.

Bonnet (1991, 1992), Franke (1991), and Bradshaw and Y oung (1991) are closest to the kinds of concerns that

we have been dedling with in this pgper. Bonnet'swork is actudly built on FR and he makes additiond
representational suggestions, including representations for what we have cdled passive functions. Franke focuses
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on representing the purpose of adesign modification and not thet of the deviceitsdf. Smilar to the work of
Iwasaki and Chandrasekaran (1992) on design verification, Franke aso matches the description of changesin
function againg a quditative amulation of behavior changes from component descriptions.

Bradshaw and Y oung represent the intended function in amanner quite smilar to FR. The most important
difference between the FR work and that of Bradshaw and Y oung and dso that of Franke isthe centra role
causd process descriptions play in explaining how afunction is achieved. Verification of device design involves
not only checking that the function is achieved, but also that the device structure played a causd rolein the
achievement of the function.

Borchardt (1993) and Doyle (1988) are dso reevant though their specific concerns are rather different from
ours. Borchardt wants to understand how to go from natural language descriptions of causal processes to amore
precise and complete representation of the details of the process. Doyl€e's gpproach consists of a set of device
models for individud physicd mechaniams. His program uses a collection of heurigtics for synthesizing, from the
mechanism descriptions, adevice mode. The hypothesized modd is checked by checking if the appropriate
congraints are satisfied. His specific mechanism representations use congraints between variables, while FR
additionally emphasizes representation of causa processes. Except for this difference, the work of Thadani and
Chandrasekaran described in the paper in congtructing device-level FR's has smilarities to Doyle's work.

6. Concluding Remarks

We have reviewed over adecade of work on device understanding from a functiond perspective. It should be
clear from the review that the research causd and functiond representationsis just beginning. It might be useful to
describe aresearch agenda for the immediate future. We take this up in the next subsection.

6.1. A Research Agenda

The specific representationa eements and organizing principles in the language developed so far have been
applied to relatively smple devices and processes. The framework needs to be exercised and expanded by
applying it to alarger variety of phenomena and devices. Following isalist of extensons on which work is elther
being done or needs to be done in the near future. It islikely that many of these problems and issues can be
handled within the current ontology, but assuredly some of them will require additional representationd and
organizationd idess.

i. Functions that arise largely from shape. Suppose we want to explain how a gear train works. We certainly
can give a CPD whose nodes are Smply symbolic predicates such as "tooth A exerts force on tooth B." In fact
thework by Hodges (1992) can be viewed as acatadog of the kind of influencesin force transfer that physical
shapes have on each other. However, in human understanding of this function the shapes of the teeth and how
they mesh in tranamitting the force play an important role. It isimportant to extend state representations to include
components which are shapes, rather than high level predicates about the effects of shapes. The trangtions from
shapes to shapes may require gpped to visud or spatid amulation.

ii. Function-sharing. Clever designs often have components that are used differently to achieve different
functions (Ulrich and Seering, 1988). It istrue that we can write an FR for each function, but an integrated view
of the role of the component would be missng in such arepresentation. This brings up amore generd problem in
FR, where, for each explicitly defined function, we can write a CPD that captures how that is accomplished. We
aso need a higher levd integrative perspective in which these individual functions are seen to be part of alarger
function which has a unitary representation.
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iii. Representation of mutually dependent functions. For example, the car battery system requires that the
engine be running regularly to keep the battery charged, while the running of the engine requires that the battery
system is functioning normaly. We need more experience with FR's that dedl with such dependencies.

iv. Abstract or generic devices. Part of engineering expertise is knowledge of device frameworks, not smply
specific devices. Examples are eectrica circuit, voltage divider, regulator, and feedback loop. These frameworks
can be indantiated in different ways, but we understand how they work at an abstract level without the
ingantiation. Building device libraries requires representationa and ingtantiation techniques to be developed for
such abstract devices.

v. Representation of functions that arise from a large number of individual elements The interactions of
bacteria and white cells can be individudly represented (Sticklen, 1987), but, given that there are millions of these
entities, it isimpossible to reason about them on an individud basis. Gross behavior has to be explained as arisng
from the behavior of numerous e ements without individudly representing the e ements.

vi. Problem-specific FR construction. We have been talking asif thereis afixed, possibly parametrized, FR for
each device -- at least for each functiond perspective -- which we retrieve from memory and apply as needed for
specific tasks. However, it gppears to me that, even for devices that we thoroughly understand, we construct
versons of FR that are gppropriate for the particular problem solving task that we face. For example, depending
upon what aspects we expect to be reasoning about, we may have quditative conditions on state trangtions, or
we may represent them with great numerica accuracy. We may explain how the lamp's filament produces light by
gppedling to an equation that relates current to lumens, or we may apped to a CPD that uses the properties of
the filament. Further, for each trangtion in a CPD, we usudly only include some conditions that we think are
worth mentioning explicitly, but we are aware of anumber of background assumptions which are not stated
explicitly. For example, if we are explaining that "liquid input a the top of adoping pipe"’ causes "liquid to emerge
a the other end,” we may annotate it in any number of ways depending upon the tasks that we expect to use it
for: "By-Function <conduit> of pipe" is one such annotation. But we aso assume that the liquid doesn't eveporate
in the meantime, that the pipe's surface is not too asorbent in relation to the amount of liquid, and so on and so
forth. These assumptions are not stated explicitly, but are available to us when we need to think of them for
debugging afaulty pipe. Thiskind of god-driven condruction of the FR is a capability that isimportant to
understand.

vii. Need for formalizing different senses of ports We have mostly discussed devices that are constructed by
composing components. The components are in turn devices aswell, i.e., they have functions which can be
andyzed smilar to the functions of the device they are part of. In addition, the devices are modeled as having
input portsand output ports. Ports serve two distinct roles which are often conflated. In one role input ports are
the places where actions are done by the user that invoke the function of the device, while output ports are the
places where the device ddivers the function. For example, we put fruitsinto the mouth of the juicer and out
comesthejuice. Or, weinput alow amplitude Sgnd at the input of an amplifier and out comes the amplified
sgnd. Thereisdso another role for the ports, and that is as the locus of connection with other devices to make
additional devices. We can cascade two amplifiers -- the output of the first amplifier is connected to the input of
the second amplifier -- to make an amplifier of higher amplification factor.

In many devicesit happens that the "input-output” and "locus-of-connection” roles go together naturdly.
However, thisisin generd not the case. For example, when we build alamp circuit by connecting abulb with a
voltage source and a switch, the input port for invocation of the function isthe switch, and the output port is not
electricd at dl, but spatid, i.e., the immediate region around the bulb. On the other hand, the device asawhaoleis
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composed out of parts (switch, battery, bulb) which are connected together at various connection ports. These
parts are themselves not devices, i.e., they cannot be defined independent of the circuit as having a behavior, let
adone afunction, unlike the individud amplifiersin the cascaded amplifier example. In the case of the cascaded
amplifier, we can trace the behavior of the device by tracing the flow of some entity -- in this case, the signdl --
from the input to the output of each component. In the case of the circuit, however, we do not explain the
function by starting from the positive termind of the battery and tracing the flow of eectricity through each of the
resstors and connecting wires. If there is abresk in the circuit, we don't say, "..electricity sarts at the positive
terminal, moves across the two resistors, and then, oops, it can't go any further because of the break." The
reason we don't do thisisthat eectricity is not modeled as flowing until the whole circuit is complete. At that
point, we modd current as flowing through each of the parts. The notion of component ports as places for
connections to make the device is separated from that as places for delivering or invoking functions.

In the case of the lamp circuit, the circuit as awhole can be composed with other components to make anew
device. For example, the light from the lamp circuit may be detected by a photo-diode in another circuit which
might activate a switch. In this case, the input-output for the lamp circuit, viewed as sgnd flow, would be the
switch and the region around the bulb. The locus of connection is the region around the bulb aswell, sncethe
photo-diode will be positioned there. The output of the device as awhole is the output of the diode circuit, within
which presumably a switch is activated. On the other hand, each of the circuits have components and loci of
connections which are quite different from the ports for the sgnd flow perspective.

We need to formalize the representation of components, ports and devices so that the more generd sense of
devicesis captured, or at least the formalization supports the distinctions that | just described.

viii. Functions which involve time. We have discussed examples where the predicates have to satisfy some
tempord relations. For example, the To- Mai nt ai n function is defined in terms of certain predicates being dways
true. We a0 discussed dynamic sate abstractions where a repesating sequence of states was defined as anew
date & ahigher level of abgtraction, say "oscillating.” But we have not discussed examples where the predicates
involve specific quantitative tempord relations between state variables. For example, the function of a sawtooth
generator isto generate output over time with specified relations over the vaues at different times. We need to
exercise the FR framework in devices of thistype. Further, the work of Rieger and Grinberg (1978) in identifying
different types of tempora congtraintsin transitions needs to be integrated with the FR work.

ix. Multiple and redundant causal pathsin CPD. There are devices where afunction is achieved by different
pardle processes, providing redundancy. There are severa versons of thistype of pardlelism. In one, the
function is a quantitetive one, e.g., SO many units of x isto be produced. A number of different causa processes,
using different subsystems, would each contribute some amount to the functiona requirement. Another verson is
smilar, but if any of the processesfail, the remaining ones pick up the dack. This requires interesting feedback.
Such mechanisms are common in biology.

6.2. Logic of Under standing

To what degree do computer programs which contain functional representations of devices and make use of them
to solve problems redly understand the devices they are reasoning about? Whether symbolic representations of
this type aone can give computers understanding, even when they perform reasoning feats that correspond to
humans, is currently atopic of heated philosophica debate in circles concerned with the foundations of Al and
cognitive science. Theminima claim | would like to make is that the FR framework is an attempt to capture the
logical structure of understanding of certain types of causal processesin the world. The FR displaysthe
elements that participate in the causd process, and highlights the relationships between them that the understander
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believes to exist. Asthe work | have described has demongtrated, possession of the logica properties enables
the representation to be the basis for many different problem solving activities.

6.3. Rich Variety of Reasoning Phenomena

| have surveyed a body of work built over the last decade on reasoning about artifacts, their functions and their
causal processes that underlie the functions. The work is based on the assumption that thereis a continuity
between reasoning in common sense domains and technica fields, that technical experts and ordinary people
share ontologies and cognitive organizing principles for the generic task of modeling the world as a causa
phenomenon, predicting behavior and synthesizing artifacts. | have emphasized thet the red power of intelligent
behavior arises from the agent's ability to organize reasoning and computationa resources in a god-directed way,
and qualitativeness of reasoning is just one aspect of it. FR investigates issues about how causa knowledge is
indexed and packaged functiondly. | have aso indicated how the work reported is complementary to the work
on quditative device modds. Together they provide an integration of top-down and bottom-up reasoning
techniques for efficient god-directed reasoning. The research areaiisrich in topics for further expanson and
exploitation.

The FR framework is just part of alarger framework that is hinted at in Section 2, one in which reasoning, action
and perception are seen as an integrated whole. Al has been too closely associated with just a**reasoning”
paradigm, and achieving various goas in the physical world is an area of research which can serve asa great
arenafor developing an integrated Al perspective.
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